
Neural Networks Language Models

Philipp Koehn

16 April 2015

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

1N-Gram Backoff Language Model

• Previously, we approximated

p(W) = p(w1, w2, ..., wn)

• ... by applying the chain rule

p(W) =
∑
i

p(wi|w1, ..., wi−1)

• ... and limiting the history (Markov order)

p(wi|w1, ..., wi−1) ' p(wi|wi−4, wi−3, wi−2, wi−1)

• Each p(wi|wi−4, wi−3, wi−2, wi−1) may not have enough statistics to estimate

→ we back off to p(wi|wi−3, wi−2, wi−1), p(wi|wi−2, wi−1), etc., all the way to p(wi)

– exact details of backing off get complicated — ”interpolated Kneser-Ney”

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

2Refinements

• A whole family of back-off schemes

• Skip-n gram models that may back off to p(wi|wi−2)

• Class-based models p(C(wi)|C(wi−4), C(wi−3), C(wi−2), C(wi−1))

⇒ We are wrestling here with

– using as much relevant evidence as possible

– pooling evidence between words

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

3First Sketch

Word 1

Word 2

Word 3

Word 4

Word 5

H
id

de
n

La
ye

r

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

4Representing Words

• Words are represented with a one-hot vector, e.g.,

– dog = (0,0,0,0,1,0,0,0,0,....)
– cat = (0,0,0,0,0,0,0,1,0,....)
– eat = (0,1,0,0,0,0,0,0,0,....)

• That’s a large vector!

• Remedies

– limit to, say, 20,000 most frequent words, rest are OTHER

– place words in
√
n classes, so each word is represented by

∗ 1 class label
∗ 1 word in class label

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

5Word Classes for Two-Hot Representations

• WordNet classes

• Brown clusters

• Frequency binning

– sort words by frequency
– place them in order into classes
– each class has same token count
→ very frequent words have their own class
→ rare words share class with many other words

• Anything goes: assign words randomly to classes

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

6Second Sketch

Word 1

Word 2

Word 3

Word 4

Word 5

H
id

de
n

La
ye

r

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

7

word embeddings

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

8Add a Hidden Layer

Word 1

Word 2

Word 3

Word 4

Word 5

H
id

de
n

La
ye

rC

C

C

C

• Map each word first into a lower-dimensional real-valued space

• Shared weight matrix C

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

9Details (Bengio et al., 2003)

• Add direct connections from embedding layer to output layer

• Activation functions

– input→embedding: none

– embedding→hidden: tanh

– hidden→output: softmax

• Training

– loop through the entire corpus

– update between predicted probabilities and 1-hot vector for output word

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

10Word Embeddings

C

Word Embedding

• By-product: embedding of word into continuous space

• Similar contexts→ similar embedding

• Recall: distributional semantics

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

11Word Embeddings

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

12Word Embeddings

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

13Are Word Embeddings Magic?

• Morphosyntactic regularities (Mikolov et al., 2013)

– adjectives base form vs. comparative, e.g., good, better
– nouns singular vs. plural, e.g., year, years
– verbs present tense vs. past tense, e.g., see, saw

• Semantic regularities

– clothing is to shirt as dish is to bowl
– evaluated on human judgment data of semantic similarities

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

14

integration into

machine translation systems

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

15Reranking

• First decode without neural network language model (NNLM)

• Generate

– n-best list

– lattice

• Score candidates with NNLM

• Rerank (requires training of weight for NNLM)

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

16Computations During Inference

Word 1

Word 2

Word 3

Word 4

Word 5

H
id

de
n

La
ye

rC

C

C

C

Precomputed

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

17Computations During Inference

Word 1

Word 2

Word 3

Word 4

Word 5

H
id

de
n

La
ye

rC

C

C

C

Precomputed Can be cached

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

18Computations During Inference

Word 1

Word 2

Word 3

Word 4

Word 5

H
id

de
n

La
ye

rC

C

C

C

Precomputed
Only compute

score for
predicted word

4x30x100
weights

100
nodes

4x30
nodes

1,000,000
nodes

100x1,000,000
100x1

weights

Can be cached

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

19Only Compute Score for Predicted Word?

• Proper probabilities require normalization

– compute scores for all possible words
– add them up
– normalize (softmax)

• How can we get away with it?

– we do not care — a score is a score (Auli and Gao, 2014)
– training regime that normalizes (Vaswani et al, 2013)
– integrate normalization into objective function (Devlin et al., 2014)

• Class-based word representations may help

– first predict class, normalize
– then predict word, normalize
→ compute 2

√
n instead of n output node values

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

20

recurrent neural networks

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

21Recurrent Neural Networks

Word 1 Word 2EC

1

H

• Start: predict second word from first

• Mystery layer with nodes all with value 1

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

22Recurrent Neural Networks

Word 1 Word 2EC

1

H

Word 2 Word 3EC H

H

copy values

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

23Recurrent Neural Networks

Word 1 Word 2EC

1

H

Word 2 Word 3EC H

H

copy values

Word 3 Word 4EC H

H

copy values

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

24Training

Word 1 Word 2E

1

H

• Process first training example

• Update weights with back-propagation

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

25Training

Word 2 Word 3E

H

H

• Process second training example

• Update weights with back-propagation

• And so on...

• But: no feedback to previous history

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

26Back-Propagation Through Time

Word 1 Word 2E

H

H

Word 2 Word 3E H

Word 3 Word 4E H

• After processing a few training examples,
update through the unfolded recurrent neural network

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

27Back-Propagation Through Time

• Carry out back-propagation though time (BPTT) after each training example

– 5 time steps seems to be sufficient

– network learns to store information for more than 5 time steps

• Or: update in mini-batches

– process 10-20 training examples

– update backwards through all examples

– removes need for multiple steps for each training example

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

28Integration into Decoder

• Recurrent neural networks depend on entire history

⇒ very bad for dynamic programming

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

29

long short term memory

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

30Vanishing and Exploding Gradients

• Error is propagated to previous steps

• Updates consider

– prediction at that time step
– impact on future time steps

• Exploding gradient: propagated error dominates weight update

• Vanishing gradient: propagated error disappears

⇒ We want the proper balance

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

31Long Short Term Memory (LSTM)

• Redesign of the neural network node to keep balance

• Rather complex

• ... but reportedly simple to train

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

32Node in a Recurrent Neural Network

• Given

– input word embedding ~x

– previous hidden layer values ~h(t−1)

– weight matrices W and U

• Sum si =
∑

j wijxj +
∑

j uijh
(t−1)
j

• Activation yi = sigmoid(si)

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

33Node (”Cell”) in LSMT

• Now three gates: input, output, forget
each with their own weight matrices: WI , UI , WO, UO, WF , UF

• Input and forget gates lead to activations as before
yIi = sigmoid(

∑
j w

I
ijxj +

∑
j u

I
ijh

(t−1)
j)

yFi = sigmoid(
∑

j w
F
ijxj +

∑
j u

F
ijh

(t−1)
j)

• Compute a candidate value for the ”state” of the node (weight matrices WC, UC)
C̃

(t)
i = tanh(

∑
j w

C
ijxj +

∑
j u

C
ijh

(t−1)
j)

• Input and forget activations balance candidate state and previous state
C

(t)
i = yIi C̃

(t)
i + yFi C(t−1)

• Output gate also considers state (additional weight matrix V)
yOi = sigmoid(

∑
j w

O
ijxj +

∑
j u

O
ijh

(t−1)
j) +

∑
j vijC

(t)
j)

• Output
h(t) = yOi tanh(C(t))

Philipp Koehn Machine Translation: Neural Networks 16 April 2015

