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N-Gram Backoff Language Model 1

e Previously, we approximated
p(W) = p(w1, wa, ..., wy)
e ... by applying the chain rule
p(W) = plwilwy, .., w;_1)
e ... and limiting the history (Markov order)
p(wi|wi, ..., wi—1) = p(wi|w;—4, Wi—3, Wi—2, Wi—1)

e FEach p(w;|w;_4,w;—3,w;_2,w;—1) may not have enough statistics to estimate

— we back off to p(wi]wi_g, W;—2, w@'_l), p(wi\wi_g, wi_l), etc., all the way to p(wz)

— exact details of backing off get complicated — “interpolated Kneser-Ney”

Philipp Koehn Machine Translation: Neural Networks 16 April 2015



Refinements 2

e A whole family of back-off schemes
e Skip-n gram models that may back off to p(w;|w;_2)

e Class-based models p(C'(w;)|C(w;_4), C(w;_3), C(w;_2), C(w;_1))

= We are wrestling here with

— using as much relevant evidence as possible

— pooling evidence between words
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First Sketch 3
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Representing Words 4

e Words are represented with a one-hot vector, e.g.,

— dog = (0,0,0,0,1,0,0,0,0,....)
— cat =(0,0,0,0,0,0,0,1,0,....)
— eat = (0,1,0,0,0,0,0,0,0,....)

e That’s a large vector!

e Remedies

— limit to, say, 20,000 most frequent words, rest are OTHER

— place words in /n classes, so each word is represented by
* 1 class label
* 1 word in class label
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Word Classes for Two-Hot Representations s

e WordNet classes
e Brown clusters

e Frequency binning

— sort words by frequency
— place them in order into classes
— each class has same token count
— very frequent words have their own class
— rare words share class with many other words

e Anything goes: assign words randomly to classes
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Second Sketch 6
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word embeddings
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Add a Hidden Layer
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e Map each word first into a lower-dimensional real-valued space

e Shared weight matrix C
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Details (Bengio et al., 2003) 9

e Add direct connections from embedding layer to output layer

e Activation functions

— input—embedding: none
— embedding—hidden: tanh

— hidden—output: softmax

e Training

— loop through the entire corpus

— update between predicted probabilities and 1-hot vector for output word
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e By-product: embedding of word into continuous space

Word Embeddings

Word Embedding
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e Similar contexts — similar embedding

e Recall: distributional semantics

o QW
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Word Embeddings 12
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Are Word Embeddings Magic?

WOMAN

UNCLE

KING

MAN/ /

QUEEN

AUNT

QUEENS

KINGS \
\ QUEEN

KING

e Morphosyntactic regularities (Mikolov et al., 2013)

— adjectives base form vs. comparative, e.g., good, better
— nouns singular vs. plural, e.g., year, years
— verbs present tense vs. past tense, e.g., see, saw

e Semantic regularities

— clothing is to shirt as dish is to bowl

— evaluated on human judgment data of semantic similarities

o QY
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integration into

machine translation systems

Philipp Koehn Machine Translation: Neural Networks 16 April 2015



Reranking 15

e First decode without neural network language model (NNLM)

e (Generate

— n-best list

— lattice
e Score candidates with NNLM

e Rerank (requires training of weight for NNLM)
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Computations During Inference 16

Precomputed
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Computations During Inference 17

Precomputed Can be cached
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Computations During Inference 18

Precomputed Can be cached

Only compute
score for
predicted word

C
C

C
c
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Only Compute Score for Predicted Word?

e Proper probabilities require normalization

— compute scores for all possible words
— add them up
— normalize (softmax)

e How can we get away with it?

— we do not care — a score is a score (Auli and Gao, 2014)
— training regime that normalizes (Vaswani et al, 2013)
— integrate normalization into objective function (Devlin et al., 2014)

o Class-based word representations may help

— first predict class, normalize
— then predict word, normalize
— compute 2./n instead of n output node values
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recurrent neural networks
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Recurrent Neural Networks 21

e Start: predict second word from first

e Mystery layer with nodes all with value 1
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Recurrent Neural Networks 22

copy values
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Recurrent Neural Networks 23
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C
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<

Training

=

e Process first training example

o Update weights with back-propagation

24
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<

Training

=

e Process second training example

o Update weights with back-propagation

e And so on...

e But: no feedback to previous history

S
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Back-Propagation Through Time 26
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o After processing a few training examples,
update through the unfolded recurrent neural network
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Back-Propagation Through Time 27
pag 5

e Carry out back-propagation though time (BPTT) after each training example

— 5 time steps seems to be sufficient

— network learns to store information for more than 5 time steps

e Or: update in mini-batches

— process 10-20 training examples
— update backwards through all examples

— removes need for multiple steps for each training example
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Integration into Decoder 28

e Recurrent neural networks depend on entire history

= very bad for dynamic programming
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=

long short term memory
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Vanishing and Exploding Gradients 30

e Error is propagated to previous steps

e Updates consider

— prediction at that time step
— impact on future time steps

e Exploding gradient: propagated error dominates weight update
e Vanishing gradient: propagated error disappears

= We want the proper balance
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Long Short Term Memory (LSTM) 31

e Redesign of the neural network node to keep balance

e Rather complex 6

e ... but reportedly simple to train
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Node in a Recurrent Neural Network 32

o Given

— input word embedding ¥

— previous hidden layer values pt=1)
— weight matrices W and U

o Sums; = Y. wix; 4y uijh§-t_1>

e Activation y; = sigmoid(s;)
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Node ("Cell”) in LSMT s

e Now three gates: input, output, forget
each with their own weight matrices: Wy, Uy, Wo, Uo, Wr, Up

e Input and forget gates lead to activations as before
y! = sigmoid(3", wha; + 32 ul ™)
yF = sigmoid (Y, wha; + 3, ubfin ™ Y)

e Compute a candidate value for the ”state” of the node (weight matrices W, Uc)
C{Y = tanh(Y", wla; + 3 uGAl ™)

3]

e Input and forget activations balance candidate state and previous state
C(t) =y C-(t) 4 yF CO(t—1)

e Output gate also considers state (additional weight matrix V)
yQ = sigmoid (>, wla; + X ulh{ V) + 30 v;0)

3

e Output
h(t) = 4@ tanh(C®)
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