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1N-Gram Backoff Language Model

• Previously, we approximated

p(W ) = p(w1, w2, ..., wn)

• ... by applying the chain rule

p(W ) =
∑
i

p(wi|w1, ..., wi−1)

• ... and limiting the history (Markov order)

p(wi|w1, ..., wi−1) ' p(wi|wi−4, wi−3, wi−2, wi−1)

• Each p(wi|wi−4, wi−3, wi−2, wi−1) may not have enough statistics to estimate

→ we back off to p(wi|wi−3, wi−2, wi−1), p(wi|wi−2, wi−1), etc., all the way to p(wi)

– exact details of backing off get complicated — ”interpolated Kneser-Ney”
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2Refinements

• A whole family of back-off schemes

• Skip-n gram models that may back off to p(wi|wi−2)

• Class-based models p(C(wi)|C(wi−4), C(wi−3), C(wi−2), C(wi−1))

⇒ We are wrestling here with

– using as much relevant evidence as possible

– pooling evidence between words
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3First Sketch
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4Representing Words

• Words are represented with a one-hot vector, e.g.,

– dog = (0,0,0,0,1,0,0,0,0,....)
– cat = (0,0,0,0,0,0,0,1,0,....)
– eat = (0,1,0,0,0,0,0,0,0,....)

• That’s a large vector!

• Remedies

– limit to, say, 20,000 most frequent words, rest are OTHER

– place words in
√
n classes, so each word is represented by

∗ 1 class label
∗ 1 word in class label
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5Word Classes for Two-Hot Representations

• WordNet classes

• Brown clusters

• Frequency binning

– sort words by frequency
– place them in order into classes
– each class has same token count
→ very frequent words have their own class
→ rare words share class with many other words

• Anything goes: assign words randomly to classes
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6Second Sketch
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7

word embeddings
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8Add a Hidden Layer
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• Map each word first into a lower-dimensional real-valued space

• Shared weight matrix C
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9Details (Bengio et al., 2003)

• Add direct connections from embedding layer to output layer

• Activation functions

– input→embedding: none

– embedding→hidden: tanh

– hidden→output: softmax

• Training

– loop through the entire corpus

– update between predicted probabilities and 1-hot vector for output word
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10Word Embeddings

C

Word Embedding

• By-product: embedding of word into continuous space

• Similar contexts→ similar embedding

• Recall: distributional semantics
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11Word Embeddings
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12Word Embeddings
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13Are Word Embeddings Magic?

• Morphosyntactic regularities (Mikolov et al., 2013)

– adjectives base form vs. comparative, e.g., good, better
– nouns singular vs. plural, e.g., year, years
– verbs present tense vs. past tense, e.g., see, saw

• Semantic regularities

– clothing is to shirt as dish is to bowl
– evaluated on human judgment data of semantic similarities
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14

integration into

machine translation systems
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15Reranking

• First decode without neural network language model (NNLM)

• Generate

– n-best list

– lattice

• Score candidates with NNLM

• Rerank (requires training of weight for NNLM)
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16Computations During Inference
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17Computations During Inference
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18Computations During Inference
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19Only Compute Score for Predicted Word?

• Proper probabilities require normalization

– compute scores for all possible words
– add them up
– normalize (softmax)

• How can we get away with it?

– we do not care — a score is a score (Auli and Gao, 2014)
– training regime that normalizes (Vaswani et al, 2013)
– integrate normalization into objective function (Devlin et al., 2014)

• Class-based word representations may help

– first predict class, normalize
– then predict word, normalize
→ compute 2

√
n instead of n output node values
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20

recurrent neural networks
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21Recurrent Neural Networks

Word 1 Word 2EC
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• Start: predict second word from first

• Mystery layer with nodes all with value 1
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22Recurrent Neural Networks
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23Recurrent Neural Networks
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24Training

Word 1 Word 2E
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• Process first training example

• Update weights with back-propagation
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25Training

Word 2 Word 3E

H

H

• Process second training example

• Update weights with back-propagation

• And so on...

• But: no feedback to previous history
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26Back-Propagation Through Time
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• After processing a few training examples,
update through the unfolded recurrent neural network
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27Back-Propagation Through Time

• Carry out back-propagation though time (BPTT) after each training example

– 5 time steps seems to be sufficient

– network learns to store information for more than 5 time steps

• Or: update in mini-batches

– process 10-20 training examples

– update backwards through all examples

– removes need for multiple steps for each training example
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28Integration into Decoder

• Recurrent neural networks depend on entire history

⇒ very bad for dynamic programming
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29

long short term memory
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30Vanishing and Exploding Gradients

• Error is propagated to previous steps

• Updates consider

– prediction at that time step
– impact on future time steps

• Exploding gradient: propagated error dominates weight update

• Vanishing gradient: propagated error disappears

⇒ We want the proper balance
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31Long Short Term Memory (LSTM)

• Redesign of the neural network node to keep balance

• Rather complex

• ... but reportedly simple to train
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32Node in a Recurrent Neural Network

• Given

– input word embedding ~x

– previous hidden layer values ~h(t−1)

– weight matrices W and U

• Sum si =
∑

j wijxj +
∑

j uijh
(t−1)
j

• Activation yi = sigmoid(si)
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33Node (”Cell”) in LSMT

• Now three gates: input, output, forget
each with their own weight matrices: WI , UI , WO, UO, WF , UF

• Input and forget gates lead to activations as before
yIi = sigmoid(

∑
j w

I
ijxj +

∑
j u

I
ijh

(t−1)
j )

yFi = sigmoid(
∑

j w
F
ijxj +

∑
j u

F
ijh

(t−1)
j )

• Compute a candidate value for the ”state” of the node (weight matrices WC, UC)
C̃

(t)
i = tanh(

∑
j w

C
ijxj +

∑
j u

C
ijh

(t−1)
j )

• Input and forget activations balance candidate state and previous state
C

(t)
i = yIi C̃

(t)
i + yFi C(t−1)

• Output gate also considers state (additional weight matrix V )
yOi = sigmoid(

∑
j w

O
ijxj +

∑
j u

O
ijh

(t−1)
j ) +

∑
j vijC

(t)
j )

• Output
h(t) = yOi tanh(C(t))
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