Neural Networks, Part 4

Philipp Koehn

23 April 2015

Big Picture

- Use of neural networks has led to significant improvements
- Incremental strategy: replace statistical components with neural components
- Leap forward strategy: start from scratch: neural machine translation

Neural Components

- Word alignment (Tamura et al., 2014)
- Language model
- Phrase translation
- Operation sequence model
- Reordering
- Morphological prediction (Tran et al., 2014)
- Syntactic models

Language Models

- We discussed this last week
- Modeling variants
 - feed-forward neural network
 - recurrent neural network
 - long short term memory neural network
- May include source context

Feed Forward Neural Network

Recurrent Neural Network

5

Long Short Term Memory

Adding Source Context (Devlin et al., 2014) 7

• Normal 5-gram language model

 $p(e_5|e_1, e_2, e_3, e_4)$

• 5-gram language model with source context $p(e_5|e_1, e_2, e_3, e_4, f_{a(5)-2}, f_{a(5)-1}, f_{a(5)}, f_{a(5)+1}, f_{a(5)+2})$

phrase translation

Phrase Translation

- Atomic unit of translation: phrase mapping
 - große Haus \rightarrow big house
 - eine Tasse \rightarrow a cup of
- Probability distribution

$$\phi(\bar{e}|\bar{f}) = \frac{\operatorname{count}(\bar{e}, f)}{\operatorname{count}(\bar{f})}$$

- Smoothed with lexical translation probabilities
- Convert this into a neural network

How to Encode a Bigram

• Auto-encoder (for bigram)

- Obtain word embeddings by traditional means (NNLM)
- Map embeddings of 2 words into lower-dimensional space
 → phrase embedding
- Learn to reconstruct the words

Recursive Auto-Encoder

- Recursive: combine phrase embedding and word
- Same weights for
 - word+word \rightarrow phrase \rightarrow word+word
 - phrase+word \rightarrow phrase \rightarrow phrase+word

Phrase Translation

Training

- 2 optimization objectives
 - reconstruction error in auto encoder
 - phrase translation error

Training

- Alternate between
 - training source embedding / translation to target
 - training target embedding / translation to source

Training

- Alternate between
 - training source embedding / translation to target
 - training target embedding / translation to source

Integration into Decoder

- Strictly tied to existing phrase table
- No use of additional context
- \Rightarrow Use as an additional feature function
- \Rightarrow Use to filter out bad phrase pairs

operation sequence model

Operation Sequence Model

01	Generate(natürlich, of course)	natürlich↓	
		of course	
02	Insert Gap	natürlich↓ John	
03	Generate (John, John)	of course John	
04	Jump Back (1)	natürlich hat↓John	
05	Generate (hat, has)	of course John has	
06	Jump Forward	natürlich hat John↓	
		of course John has	
07	Generate(natürlich, of course)	natürlich hat John Spaß↓	
		of course John has fun	
08	Generate(am, with)	natürlich hat John Spaß am \downarrow	
09	GenerateTargetOnly(the)	of course John has fun with the	
<i>o</i> ₁₀	Generate(Spiel, game)	natürlich hat John Spaß am Spiel↓	
		of course John has fun with the game	

Operation Sequence Model

- Phrase based models have problems with
 - phrase segmentation
 - balance of short and long phrases
- Break up phrase translation
 - minimal translation units
 - reordering operations
- Model a sequence of operations

 $p(o_1) p(o_2|o_1) p(o_3|o_1, o_2) \dots p(o_{10}|o_6, o_7, o_8, o_9)$

Neural Operation Sequence Model

• Not done yet

almost: Hu et al. (2014) and Wu et al. (2014) model MTU sequences (recurrent neural network, only re-ranking)

• Arguably, OSM and Devlin et al. (2014)'s JNNLM do something similar as Birch et al. (2014) show:

	English–French	German–English
Baseline	35.7	32.5
OSM	37.3 (+1.6)	33.0 (+0.5)
JNNLM	36.7 (+1.0)	32.4 (-0.1)
OSM + JNNLM	37.4 (+1.7)	32.8 (+0.3)

reordering

Reordering (Li et al., 2014)

• Lexicalized reordering model

 $p(\text{orientation}|\bar{f},\bar{e})$

with orientation \in {monotone, swap, discontinuous}

- Encode phrases with recursive auto-encoders
- We may also want to include the previous phrase pair

 $p(\text{orientation}|\bar{f}, \bar{e}, \bar{f}_{-1}, \bar{e}_{-1})$

Richer context \rightarrow only used for re-ranking

syntax models

Syntax Models

Directions

- Better transfer rules not done yet:
 - better back off between minimal rules and composed rules
 - flexible use of source and target side syntax
 - long distance agreement
- Better syntactic language models
 - is the output syntactically coherent?
 - \rightarrow model the tree structure

Derivation Tree

Phrase Structure Tree

• Consider the phrase structure tree that was built

Head Words

- Annotate with head words
 - standard rules which of the children is head node
 - e.g., noun phrase: last noun

Dependency Structure

- Reduce tree to non-inheriting children connections
- Parent / Grandparent relationships coffee \rightarrow cup \rightarrow drink
- Sibling relationships she \leftrightarrow drink

- Top-down / left-right model
- Predict from ancestry (up to 2)
 - parent
 - grand-parent
- Predict from left children (up to 2)
- Example: $p(coffee | cup, drink, a, \epsilon)$

Neural Network Model

• Probability distribution

p(word|parent, grand-parent, left-most-sibling, 2nd-left-most-sibling) for instance

```
p(\text{coffee}|\text{cup}, \text{drink}, \mathbf{a}, \epsilon)
```

can be converted straightforward into a feed-forward neural network

- Words encoded with embeddings
- Empty slots modeled by average embedding over all words

neural translation models

Encoder–Decoder Model

- Word embeddings seen as "semantic representations"
- Recurrent Neural Network
 → semantic representation of whole sentence
- Idea
 - encode semantics of the source sentence with recurrent neural network
 - decode semantics into target sentence from recurrent neural network
- Model $(w_1, ..., w_{l_f+l_e}) = (f_1, ..., f_{l_f}, e_1, ..., e_{l_e})$ $\prod_k p(w_1, ..., w_{l_f+l_e}) = \prod p(w_k | w_1, ..., w_{k-1})$
- But: bias towards end of sentence

LSTM and Reversed Order (Sutskever et al., 2014)

- Long short term memory for better retention of long distance memory
- Reverse production of target sentence

 $(f_1, ..., f_{l_f}, e_{l_e}, ..., e_1)$

- Some tricks (ensemble learning)
- Claims that it works as stand-alone model but better in reranking

Convolutional Neural Networks (Kalchbrenner and Blunsom, 2013)

- Build sentence representation bottom-up
 - merge any *n* neighboring nodes
 - *n* may be 2, 3, ...
- Generate target sentence by inverting the process

Generation

- Encode with convolutional neural network
- Decode with convolutional neural network
- Also include a linear recurrent neural network
- Important: predict length of output sentence
- Does it work? used successfully in re-ranking (Cho et al., 2014)

neural translation with alignment model

Some Preparation

• Train a recurrent neural network language model on the source side

Hidden Language Model States

• This gives us the hidden states

- These encode left context for each word
- Same process in reverse: right context for each word

$$\begin{array}{c|c} \hat{H}1 & & & \\ \hline H2 & & & \\ \hline H3 & & & \\ \hline H4 & & & \\ \hline H5 & & \\ \hline H6 & & \\ \hline \end{array}$$

Translation Model

• We want to have a recurrent neural network predicting output words e_i

• Somehow informed by the source context c_i , specific to each output word

Alignment Model

• Given

- the previous state of the target RNN s_{i-1}
- the representation of any source word $h_j = (\overleftarrow{h_j}, \overrightarrow{h_j})$
- Predict an alignment probability $a(s_{i-1}, h_j)$ (of course, model with with a neural network)
- Normalize (softmax)

$$a_{ij} = \frac{\exp(a(s_{i-1}, h_j))}{\sum_k \exp(a(s_{i-1}, h_k))}$$

• Relevant source context: average weight of input word representations

$$c_i = \sum_j a_{ij} h_j$$

Putting it all together

• Model jointly trained to align and translate

conclusions

Incremental: Neural Components

- Modelling existing components with neural networks, e.g.,
 - language model
 - phrase translation
 - reordering model
- Conditional probability distribution \rightarrow feed forward neural network
- Sequence model \rightarrow recurrent neural network
- Neural networks allow integration of richer context
 - may cause problems for decoding (state splitting)
 - $\rightarrow\,$ use only in re-ranking

Leap Forward: Neural Machine Translation 45

- No more beam search: hidden state capture all ambiguity
- But: proposed models feel like
 - IBM Model 1: condition broadly on the source sentence
 - IBM Model 2: use of a word-based alignment model
- It is a long climb to more structure in the model (phrases, syntax)...