
Phrase-Based Models

Philipp Koehn

17 February 2015

Philipp Koehn Machine Translation: Phrase-Based Models 17 February 2015



1Motivation

• Word-Based Models translate words as atomic units

• Phrase-Based Models translate phrases as atomic units

• Advantages:

– many-to-many translation can handle non-compositional phrases
– use of local context in translation
– the more data, the longer phrases can be learned

• ”Standard Model”, used by Google Translate and others
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2Phrase-Based Model

• Foreign input is segmented in phrases

• Each phrase is translated into English

• Phrases are reordered
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3Phrase Translation Table

• Main knowledge source: table with phrase translations and their probabilities

• Example: phrase translations for natuerlich

Translation Probability φ(ē|f̄)
of course 0.5
naturally 0.3
of course , 0.15

, of course , 0.05
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4Real Example

• Phrase translations for den Vorschlag learned from the Europarl corpus:

English φ(ē|f̄) English φ(ē|f̄)

the proposal 0.6227 the suggestions 0.0114
’s proposal 0.1068 the proposed 0.0114
a proposal 0.0341 the motion 0.0091
the idea 0.0250 the idea of 0.0091
this proposal 0.0227 the proposal , 0.0068
proposal 0.0205 its proposal 0.0068
of the proposal 0.0159 it 0.0068
the proposals 0.0159 ... ...

– lexical variation (proposal vs suggestions)
– morphological variation (proposal vs proposals)
– included function words (the, a, ...)
– noise (it)
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5Linguistic Phrases?

• Model is not limited to linguistic phrases
(noun phrases, verb phrases, prepositional phrases, ...)

• Example non-linguistic phrase pair

spass am→ fun with the

• Prior noun often helps with translation of preposition

• Experiments show that limitation to linguistic phrases hurts quality
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6

modeling
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7Noisy Channel Model

• We would like to integrate a language model

• Bayes rule

argmaxe p(e|f) = argmaxe

p(f |e) p(e)

p(f)

= argmaxe p(f |e) p(e)
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8Noisy Channel Model

• Applying Bayes rule also called noisy channel model

– we observe a distorted message R (here: a foreign string f)
– we have a model on how the message is distorted (here: translation model)
– we have a model on what messages are probably (here: language model)
– we want to recover the original message S (here: an English string e)
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9More Detail

• Bayes rule

ebest = argmaxe p(e|f)
= argmaxe p(f |e) pLM(e)

– translation model p(e|f)
– language model pLM(e)

• Decomposition of the translation model

p(f̄ I1 |ēI1) =

I∏
i=1

φ(f̄i|ēi) d(starti − endi−1 − 1)

– phrase translation probability φ
– reordering probability d
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10Distance-Based Reordering

1 2 3 4 5 6 7

d=0
d=-3

d=2
d=1

foreign

English

phrase translates movement distance
1 1–3 start at beginning 0
2 6 skip over 4–5 +2
3 4–5 move back over 4–6 -3
4 7 skip over 6 +1

Scoring function: d(x) = α|x| — exponential with distance
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11

training

Philipp Koehn Machine Translation: Phrase-Based Models 17 February 2015



12Learning a Phrase Translation Table

• Task: learn the model from a parallel corpus

• Three stages:

– word alignment: using IBM models or other method
– extraction of phrase pairs
– scoring phrase pairs
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13Word Alignment
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14Extracting Phrase Pairs

house
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extract phrase pair consistent with word alignment:

assumes that / geht davon aus , dass
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15Consistent

ok violated ok
one

alignment
point outside

unaligned
word is fine

All words of the phrase pair have to align to each other.
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16Consistent

Phrase pair (ē, f̄) consistent with an alignment A, if all words f1, ..., fn in f̄ that
have alignment points in A have these with words e1, ..., en in ē and vice versa:

(ē, f̄) consistent with A⇔
∀ei ∈ ē : (ei, fj) ∈ A→ fj ∈ f̄

AND ∀fj ∈ f̄ : (ei, fj) ∈ A→ ei ∈ ē
AND ∃ei ∈ ē, fj ∈ f̄ : (ei, fj) ∈ A

Philipp Koehn Machine Translation: Phrase-Based Models 17 February 2015



17Phrase Pair Extraction
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Smallest phrase pairs:
michael — michael

assumes — geht davon aus / geht davon aus ,
that — dass / , dass

he — er
will stay — bleibt

in the — im
house — haus

unaligned words (here: German comma) lead to multiple translations
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18Larger Phrase Pairs
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michael assumes — michael geht davon aus / michael geht davon aus ,
assumes that — geht davon aus , dass ; assumes that he — geht davon aus , dass er

that he — dass er / , dass er ; in the house — im haus
michael assumes that — michael geht davon aus , dass

michael assumes that he — michael geht davon aus , dass er
michael assumes that he will stay in the house — michael geht davon aus , dass er im haus bleibt

assumes that he will stay in the house — geht davon aus , dass er im haus bleibt
that he will stay in the house — dass er im haus bleibt ; dass er im haus bleibt ,

he will stay in the house — er im haus bleibt ; will stay in the house — im haus bleibt
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19Scoring Phrase Translations

• Phrase pair extraction: collect all phrase pairs from the data

• Phrase pair scoring: assign probabilities to phrase translations

• Score by relative frequency:

φ(f̄ |ē) =
count(ē, f̄)∑
f̄i

count(ē, f̄i)
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20EM Training of the Phrase Model

• We presented a heuristic set-up to build phrase translation table
(word alignment, phrase extraction, phrase scoring)

• Alternative: align phrase pairs directly with EM algorithm

– initialization: uniform model, all φ(ē, f̄) are the same
– expectation step:
∗ estimate likelihood of all possible phrase alignments for all sentence pairs

– maximization step:
∗ collect counts for phrase pairs (ē, f̄), weighted by alignment probability
∗ update phrase translation probabilties p(ē, f̄)

• However: method easily overfits
(learns very large phrase pairs, spanning entire sentences)
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21Size of the Phrase Table

• Phrase translation table typically bigger than corpus

... even with limits on phrase lengths (e.g., max 7 words)

→ Too big to store in memory?

• Solution for training

– extract to disk, sort, construct for one source phrase at a time

• Solutions for decoding

– on-disk data structures with index for quick look-ups
– suffix arrays to create phrase pairs on demand
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22

advanced modeling
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23Weighted Model

• Described standard model consists of three sub-models
– phrase translation model φ(f̄ |ē)
– reordering model d
– language model pLM(e)

ebest = argmaxe

I∏
i=1

φ(f̄i|ēi) d(starti − endi−1 − 1)

|e|∏
i=1

pLM(ei|e1...ei−1)

• Some sub-models may be more important than others

• Add weights λφ, λd, λLM

ebest = argmaxe

I∏
i=1

φ(f̄i|ēi)λφ d(starti − endi−1 − 1)λd
|e|∏
i=1

pLM(ei|e1...ei−1)λLM
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24Log-Linear Model

• Such a weighted model is a log-linear model:

p(x) = exp

n∑
i=1

λihi(x)

• Our feature functions

– number of feature function n = 3

– random variable x = (e, f, start, end)

– feature function h1 = log φ
– feature function h2 = log d
– feature function h3 = log pLM
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25Weighted Model as Log-Linear Model

p(e, a|f) = exp(λφ

I∑
i=1

log φ(f̄i|ēi)+

λd

I∑
i=1

log d(ai − bi−1 − 1)+

λLM

|e|∑
i=1

log pLM(ei|e1...ei−1))
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26More Feature Functions

• Bidirectional alignment probabilities: φ(ē|f̄) and φ(f̄ |ē)

• Rare phrase pairs have unreliable phrase translation probability estimates

→ lexical weighting with word translation probabilities

does

ge
ht

ni
ch

t

da
vo

n

not

assume

au
s

N
U

LL

lex(ē|f̄ , a) =

length(ē)∏
i=1

1

|{j|(i, j) ∈ a}|
∑
∀(i,j)∈a

w(ei|fj)
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27More Feature Functions

• Language model has a bias towards short translations

→word count: wc(e) = log |e|ω

• We may prefer finer or coarser segmentation

→ phrase count pc(e) = log |I|ρ

• Multiple language models

• Multiple translation models

• Other knowledge sources
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28

reordering
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29Lexicalized Reordering

• Distance-based reordering model is weak
→ learn reordering preference for each phrase pair

• Three orientations types: (m) monotone, (s) swap, (d) discontinuous

orientation ∈ {m, s, d}
po(orientation|f̄ , ē)
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30Learning Lexicalized Reordering

? ?

• Collect orientation information during phrase pair extraction

– if word alignment point to the top left exists→monotone

– if a word alignment point to the top right exists→ swap

– if neither a word alignment point to top left nor to the top right exists
→ neither monotone nor swap→ discontinuous
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31Learning Lexicalized Reordering

• Estimation by relative frequency

po(orientation) =

∑
f̄

∑
ē count(orientation, ē, f̄)∑
o

∑
f̄

∑
ē count(o, ē, f̄)

• Smoothing with unlexicalized orientation model p(orientation) to avoid zero
probabilities for unseen orientations

po(orientation|f̄ , ē) =
σ p(orientation) + count(orientation, ē, f̄)

σ +
∑
o count(o, ē, f̄)
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32

operation sequence model
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33A Critique: Phrase Segmentation is Arbitrary

• If multiple segmentations possible - why chose one over the other?

spass am spiel vs. spass am spiel

• When choose larger phrase pairs or multiple shorter phrase pairs?

spass am spiel vs. spass am spiel vs. spass am spiel

• None of this has been properly addressed
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34A Critique: Strong Independence Assumptions

• Lexical context considered only within phrase pairs

spass am → fun with

• No context considered between phrase pairs

? spass am ? → ? fun with ?

• Some phrasal context considered in lexicalized reordering model
... but not based on the identity of neighboring phrases
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35Segmentation? Minimal Phrase Pairs

natürlich hat John Spaß am Spiel

of course John has fun with the game

⇓

natürlich hat John Spaß Spiel

of course John has fun game

am

with the
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36Independence?
Consider Sequence of Operations

o1 Generate(natürlich, of course) natürlich ↓
of course

o2 Insert Gap natürlich ↓ John
o3 Generate (John, John) of course John
o4 Jump Back (1) natürlich hat ↓ John
o5 Generate (hat, has) of course John has
o6 Jump Forward natürlich hat John ↓

of course John has
o7 Generate(natürlich, of course) natürlich hat John Spaß ↓

of course John has fun
o8 Generate(am, with) natürlich hat John Spaß am ↓
o9 GenerateTargetOnly(the) of course John has fun with the
o10 Generate(Spiel, game) natürlich hat John Spaß am Spiel ↓

of course John has fun with the game
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37Operation Sequence Model

• Operations

– generate (phrase translation)
– generate target only
– generate source only
– insert gap
– jump back
– jump forward

• N-gram sequence model over operations, e.g., 5-gram model:

p(o1) p(o2|o1) p(o3|o1, o2) ... p(o10|o6, o7, o8, o9)
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38In Practice

• Operation Sequence Model used as additional feature function

• Significant improvements over phrase-based baseline

→ State-of-the-art systems include such a model
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39Summary

• Phrase Model

• Training the model

– word alignment
– phrase pair extraction
– phrase pair scoring
– EM training of the phrase model

• Log linear model

– sub-models as feature functions
– lexical weighting
– word and phrase count features

• Lexicalized reordering model

• Operation sequence model
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