Tuning

Philipp Koehn

26 February 2015

The Story so Far: Generative Models

• The definition of translation probability follows a mathematical derivation

$$\operatorname{argmax}_{\mathbf{e}} p(\mathbf{e} | \mathbf{f}) = \operatorname{argmax}_{\mathbf{e}} p(\mathbf{f} | \mathbf{e}) \ p(\mathbf{e})$$

• Occasionally, some independence assumptions are thrown in for instance IBM Model 1: word translations are independent of each other

$$p(\mathbf{e}|\mathbf{f}, a) = \frac{1}{Z} \prod_{i} p(e_i|f_{a(i)})$$

- Generative story leads to straight-forward estimation
 - maximum likelihood estimation of component probability distribution
 - EM algorithm for discovering hidden variables (alignment)

Log-linear Models

• IBM Models provided mathematical justification for multiplying components

 $p_{LM} \times p_{TM} \times p_D$

• These may be weighted

 $p_{LM}^{\lambda_{LM}} \times p_{TM}^{\lambda_{TM}} \times p_D^{\lambda_D}$

• Many components p_i with weights λ_i

 $\prod_i p_i^{\lambda_i}$

• We typically operate in log space

$$\sum_{i} \lambda_i \log(p_i) = \log \prod_{i} p_i^{\lambda_i}$$

Knowledge Sources

- Many different knowledge sources useful
 - language model
 - reordering (distortion) model
 - phrase translation model
 - word translation model
 - word count
 - phrase count
 - character count
 - drop word feature
 - phrase pair frequency
 - additional language models
- Could be any function $h(\mathbf{e}, \mathbf{f}, \mathbf{a})$

$$h(\mathbf{e}, \mathbf{f}, \mathbf{a}) = \begin{cases} 1 & \text{if } \exists e_i \in \mathbf{e}, e_i \text{ is verb} \\ 0 & otherwise \end{cases}$$

Set Feature Weights

- Contribution of components p_i determined by weight λ_i
- Methods
 - manual setting of weights: try a few, take best
 - automate this process
- Learn weights
 - set aside a development corpus
 - set the weights, so that optimal translation performance on this development corpus is achieved
 - requires automatic scoring method (e.g., BLEU)

Discriminative vs. Generative Models

- Generative models
 - translation process is broken down to steps
 - each step is modeled by a probability distribution
 - each probability distribution is estimated from data by maximum likelihood
- Discriminative models
 - model consist of a number of features (e.g. the language model score)
 - each feature has a weight, measuring its value for judging a translation as correct
 - feature weights are optimized on development data, so that the system output matches correct translations as close as possible

Overview

- Generate a set of possible translations of a sentence (candidate translations)
- Each candidate translation represented using a set of features
- Each feature derives from one property of the translation
 - feature score: value of the property (e.g., language model probability)
 - feature weight: importance of the feature
 (e.g., language model feature more important than word count feature)
- Task of discriminative training: find good feature weights
- Highest scoring candidate is best translation according to model

Discriminative Training Approaches

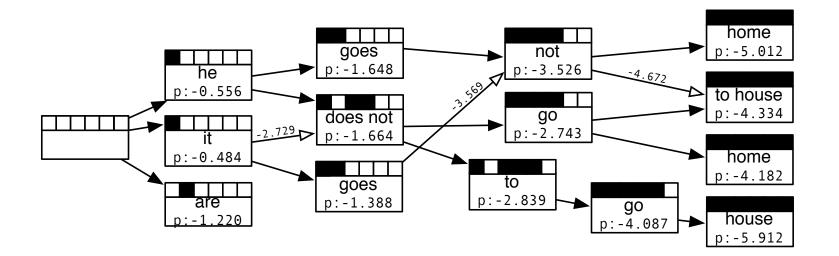
- Reranking: 2 pass approach
 - first pass: run decoder to generate set of candidate translations
 - second pass:
 - * add features
 - * rescore translations
- Tuning
 - integrate all features into the decoder
 - learn feature weights that lead decoder to best translation
- Large scale discriminative training (next lecture)
 - thousands or millions of features
 - optimization of the entire training corpus
 - requires different training methods

finding candidate translations

Finding Candidate Translations

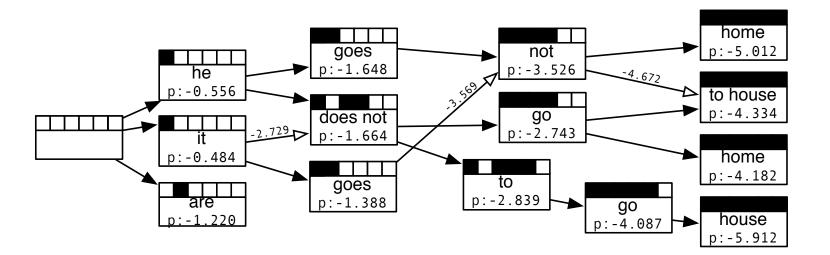
- Number of possible translations exponential with sentence length
- But: we are mainly interested in the most likely ones
- Recall: decoding
 - do not list all possible translation
 - beam search for best one
 - dynamic programming and pruning
- How can we find **set** of best translations?

Search Graph



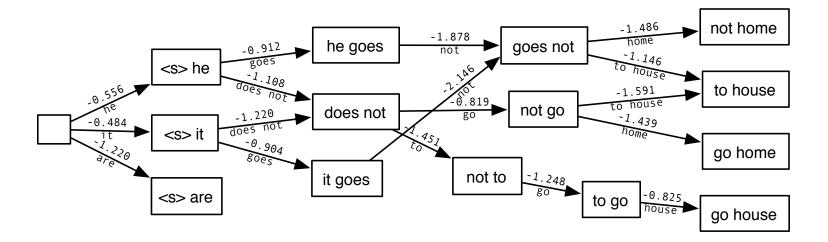
- Decoding explores space of possible translations by expanding the most promising partial translations
- \Rightarrow Search graph

Search Graph



- Keep transitions from recombinations
 - without: total number of paths = number of full translation hypotheses
 - with: combinatorial expansion
- Example
 - without: 4 full translation hypotheses
 - with: 10 different full paths
- Typically many more paths due to recombination

Word Lattice



- Search graph as finite state machine
 - states: partial translations
 - transitions: applications of phrase translations
 - weights: added scores by phrase translation

Finite State Machine

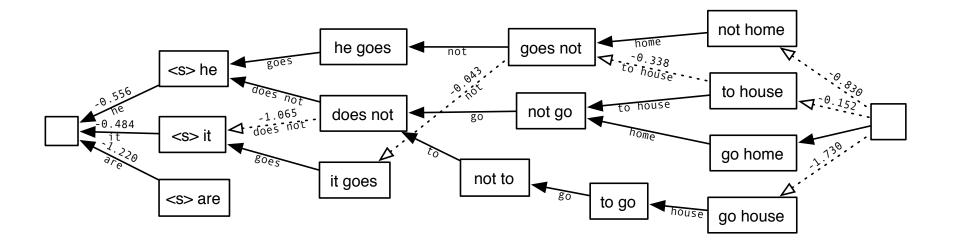
- Formally, a finite state machine, is a q quintuple $(\Sigma, S, s_0, \delta, F)$, where
 - Σ is the alphabet of output symbols (in our case, the emitted phrases)
 - *S* is a finite set of states
 - s_0 is an initial state ($s_0 \in S$), (in our case the initial hypothesis)
 - δ is the state transition function $\delta: S \times \Sigma \to S$
 - *F* is the set of final states (in our case representing hypotheses that have covered all input words).
- Weighted finite state machine
 - scores for emissions from each transition $\pi:S\times\Sigma\times S\to \mathbf{R}$

N-Best List

rank	score	sentence
1	-4.182	he does not go home
2	-4.334	he does not go to house
3	-4.672	he goes not to house
4	-4.715	it goes not to house
5	-5.012	he goes not home
6	-5.055	it goes not home
7	-5.247	it does not go home
8	-5.399	it does not go to house
9	-5.912	he does not to go house
10	-6.977	it does not to go house

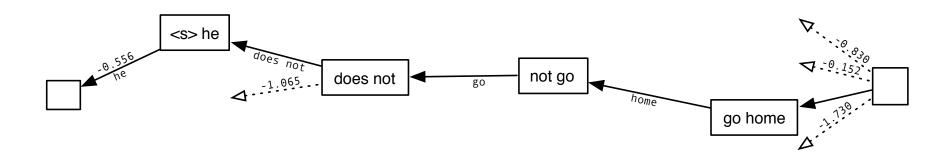
- Word graph may be too complex for some methods
- \Rightarrow Extract *n* best translations

Computing N-Best Lists



- Representing the graph with back transitions
- Include "detours" with cost

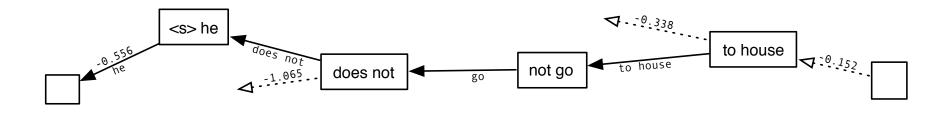
Path 1



- Follow back transitions
- \Rightarrow Best path: he does not go home
 - Keep note of detours from this path

Base path	Base cost	Detour cost	Detour state
final	-0	-0.152	to house
final	-0	-0.830	not home
final	-0	-1.065	does not
final	-0	-1.730	go house

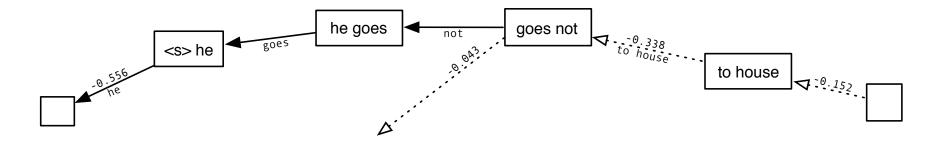
Path 2



- Take cheapest detour
- Afterwards, follow back transitions
- Second best path: he does not go to house
- Add its detours to priority queue

Base path	Base cost	Detour cost	Detour state
to house	-0.152	-0.338	goes not
final	-0	-0.830	not home
final	-0	-1.065	does not
to house	-0.152	-1.065	it
final	-0	-1.730	go house

Path 3



- Third best path: he goes not to house
- Add its detours to priority queue

Base path	Base cost	Detour cost	Detour state		
to house / goes not	-0.490	-0.043	it goes		
final	-0	-0.830	not home		
final	-0	-1.065	does not		
to house	-0.152	-1.065	it		
final	-0	-1.730	go house		

Scoring N-Best List

- Two opinions about items in the n-best list
 - model score: what the machine translation system thinks is good
 - error score: what is actually a good translation
- Error score can be computed with reference translation
 - recall: lecture on evaluation
 - canonical metric: BLEU score
- Some methods require sentence-level scores
 - commonly used: BLEU+1
 - adjusted precision: $\frac{\text{correct matches}+1}{total+1}$

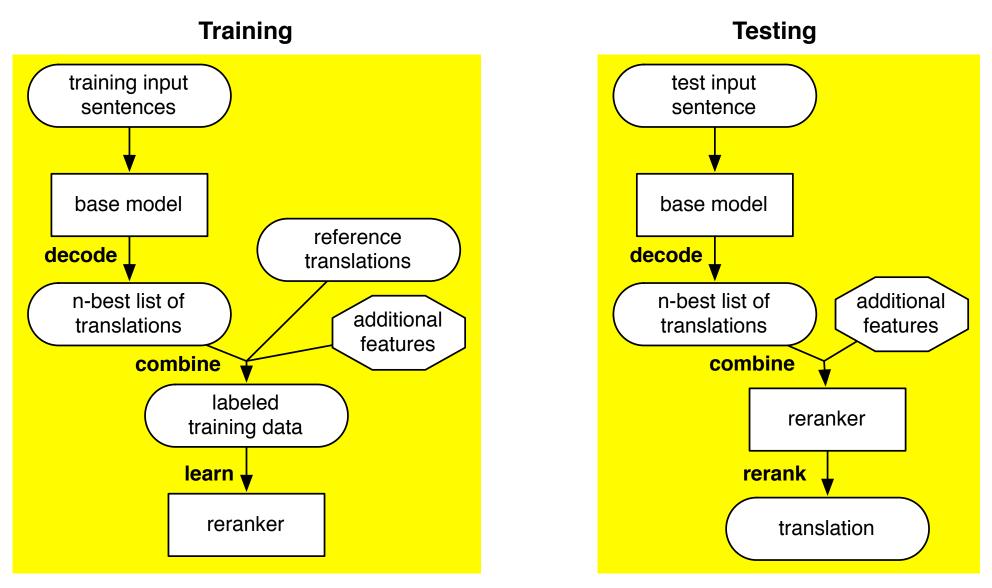
Scored N-Best List

- Reference translation: he does not go home
- N-best list

Translation	Feature values					BLEU+1	
it is not under house	-32.22	-9.93	-19.00	-5.08	-8.22	-5	27.3%
he is not under house	-34.50	-7.40	-16.33	-5.01	-8.15	-5	30.2%
it is not a home	-28.49	-12.74	-19.29	-3.74	-8.42	-5	30.2%
it is not to go home	-32.53	-10.34	-20.87	-4.38	-13.11	-6	31.2%
it is not for house	-31.75	-17.25	-20.43	-4.90	-6.90	-5	27.3%
he is not to go home	-35.79	-10.95	-18.20	-4.85	-13.04	-6	31.2%
he does not home	-32.64	-11.84	-16.98	-3.67	-8.76	-4	36.2%
it is not packing	-32.26	-10.63	-17.65	-5.08	-9.89	-4	21.8%
he is not packing	-34.55	-8.10	-14.98	-5.01	-9.82	-4	24.2%
he is not for home	-36.70	-13.52	-17.09	-6.22	-7.82	-5	32.5%

• What feature weights push up the correct translation?

Rerank Approach



parameter tuning

Parameter Tuning

• Recall log-linear model

$$p(x) = \exp\sum_{i=1}^{n} \lambda_i h_i(x)$$

- Overall translation score p(x) is combination of components $h_i(x)$, weighted by parameters λ_i
- Setting parameters as supervised learning problem
- Two methods
 - Powell search
 - Simplex algorithm

Experimental Setup

- Training data for translation model: 10s to 100s of millions of words
- Training data for language model: billions of words
- Parameter tuning
 - set a few weights (say, 10–15)
 - tuning set of 1000s of sentence pairs sufficient
- Finally, test set needed

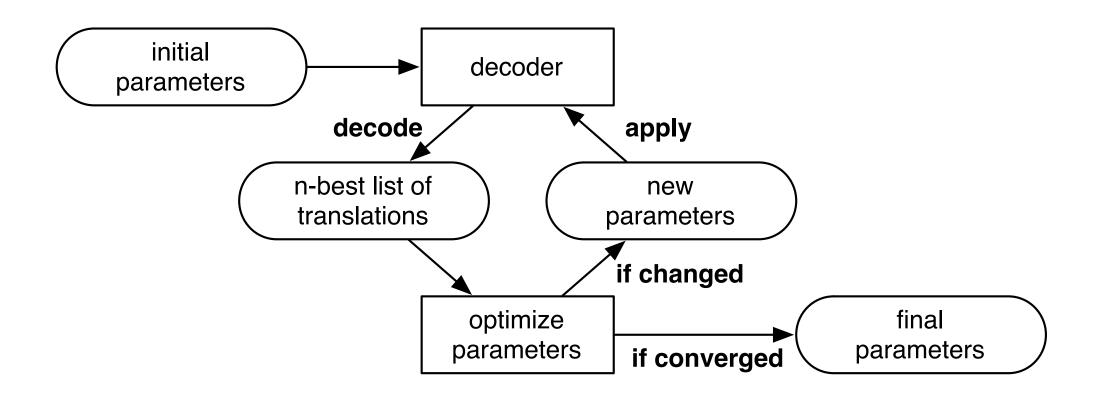
Minimum Error Rate Training

- Optimize metric: e.g., BLEU
- Tuning set of 1000s of sentences, for each we have n-best list of translations
- Different weight setting
 - \rightarrow different translations come out on top
 - \rightarrow BLEU score
- Even with 10-15 features: high dimensional space, intractable

Bad N-Best Lists?

- N-Best list produced with initial weight setting
- Decoding with optimized weight settings
 → may produce completely different translations
- ⇒ Iterate optimization, accumulate n-best lists

Parameter Tuning



powell search

Och's minimum error rate training (MERT) 29

• Line search for best feature weights

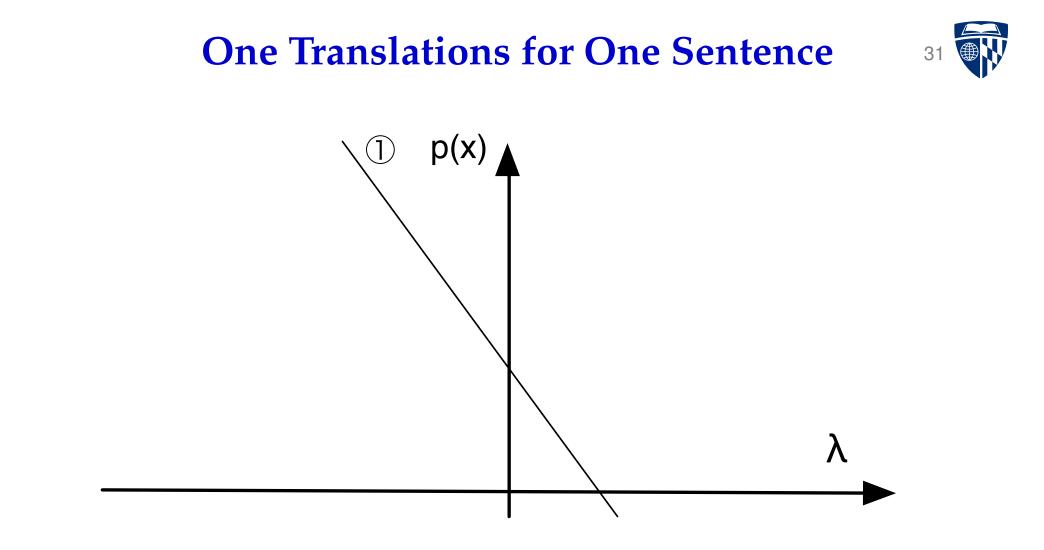
```
given: sentences with n-best list of
translations
iterate n times
    randomize starting feature weights
        iterate until convergences
            for each feature
                find best feature weight
                update if different from
current
return best feature weights found in any
iteration
```

Find Best Feature Weight

- Core task:
 - find optimal value for one parameter weight λ
 - ... while leaving all other weights constant
- Score of translation *i* for a sentence **f**:

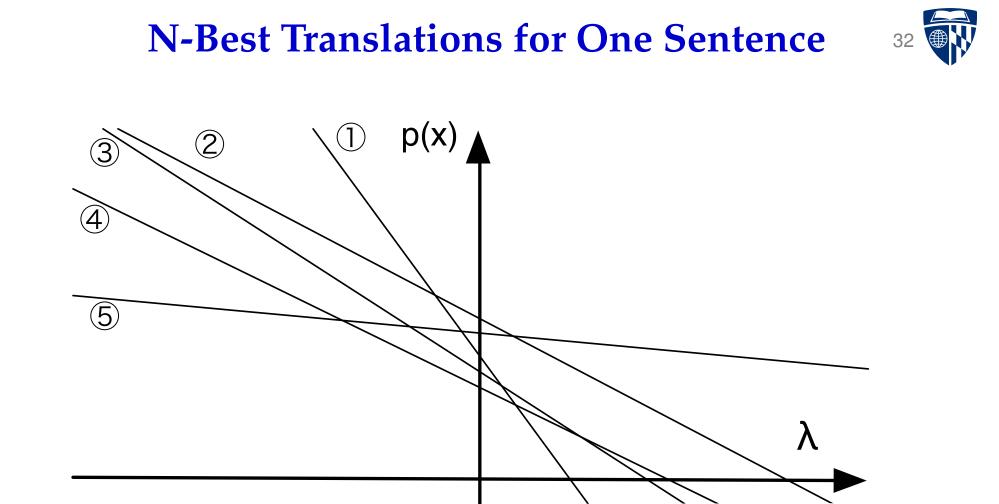
 $p(\mathbf{e}_i|\mathbf{f}) = \lambda a_i + b_i$

- Recall that:
 - we deal with 100s of translations \mathbf{e}_i per sentence **f**
 - we deal with 100s or 1000s of sentences **f**
 - we are trying to find the value λ so that over all sentences, the error score is optimized



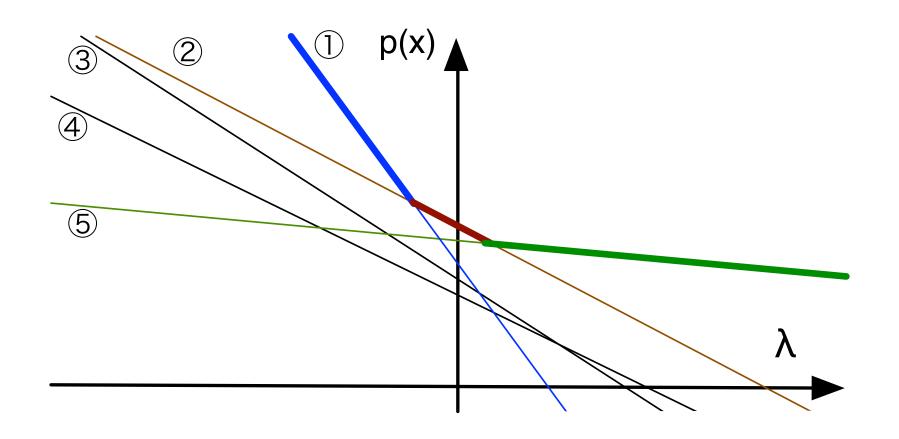
• Probability of one translation $p(\mathbf{e}_i | \mathbf{f})$ is a function of λ

 $p(\mathbf{e}_i|\mathbf{f}) = \lambda a_i + b_i$



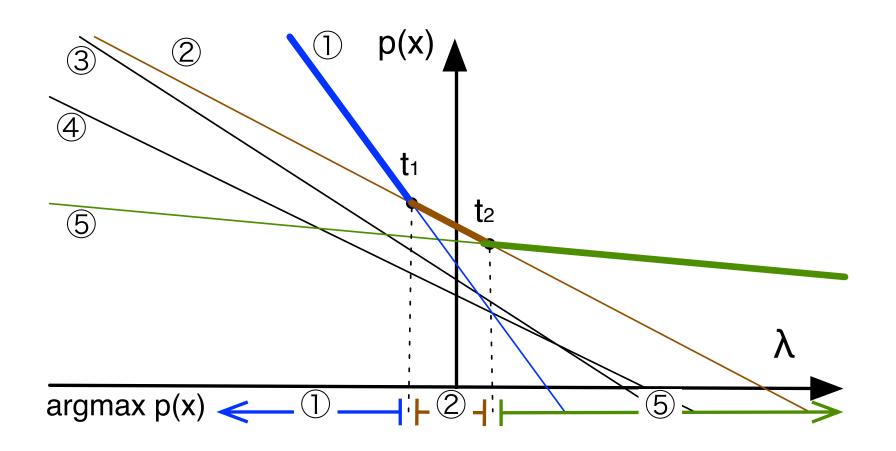
• Each translation is a different line

Upper Envelope



• Highest probability translation depends on λ

Threshold Points



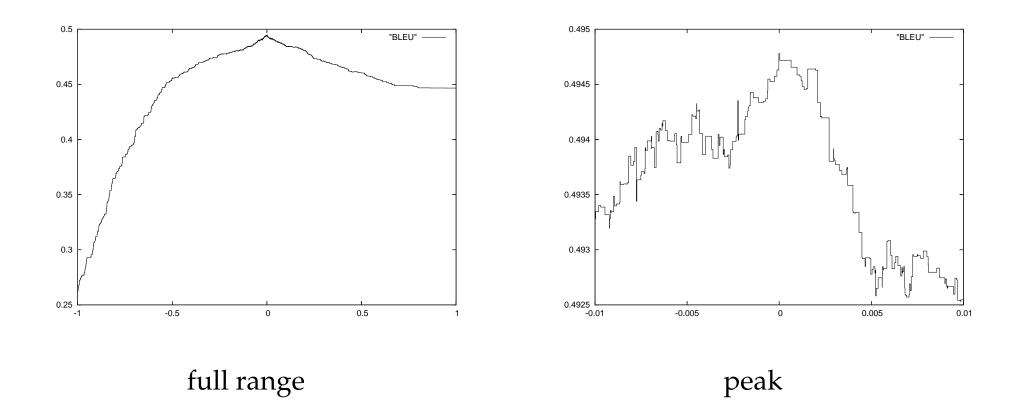
• There are one a few threshold points t_j where the model-best line changes

Finding the Optimal Value for λ

- Real-valued λ can have infinite number of values
- But only on threshold points, one of the model-best translation changes
- \Rightarrow Algorithm:
 - find the threshold points
 - for each interval between threshold points
 - * find best translations
 - * compute error-score
 - pick interval with best error-score

BLEU Error Surface

• Varying one parameter: a rugged line with many local optima



Pseudo Code

Input: sentences with n-best list of translations, initial parameter values

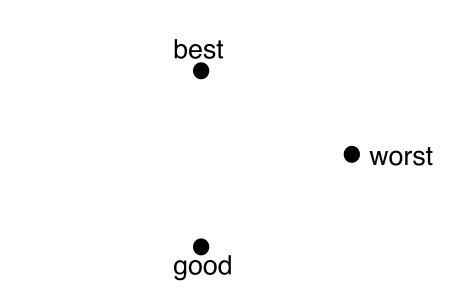
1:	repeat	
2.	for all	nar

- 2: **for all** parameter **do**
- 3: set of threshold points $T = \{\}$
- 4: **for all** sentence **do**
- 5: **for all** translation **do**
- 6: compute line *l*: parameter value \rightarrow score
- 7: end for
- 8: find line l with steepest descent
- 9: while find line l_2 that intersects with l first **do**
- 10: add parameter value at intersection to set of threshold points T
- 11: $l = \overline{l}_2$
- 12: end while
- 13: **end for**
- 14: sort set of threshold points T by parameter value
- 15: compute score for value before first threshold point
- 16: **for all** threshold point $t \in T$ **do**
- 17: compute score for value after threshold point t
- 18: **if** highest **do** record max score and threshold point t
- 19: end for
- 20: **if** max score is higher than current **do** update parameter value
- 21: end for
- 22: until no changes to parameter values applied

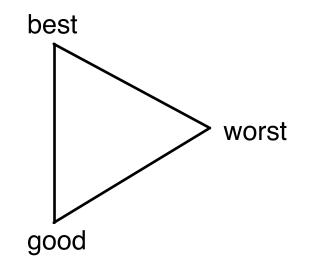
simplex algorithm

- Similar to Powell search
- Less calculations of the current error
 - recall: error is computed over the entire tuning set
 - brute force method requires reranking of 1000s of n-best lists
- Similar to gradient descent methods
 - try to find direction in which the optimum lies
 - here: we cannot compute derivative

- Randomly generate three points in the high dimensional space
 - high dimensional space = each dimension is one of the λ_i parameters
 - a point in the space = each parameter set to a value

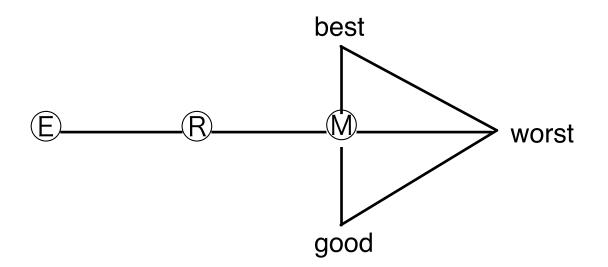


- We can score each of these points
 - use parameter settings to rerank all the n-best lists
 - compute overall tuning set score (BLEU)
- Rank the 3 points into best, good, worst



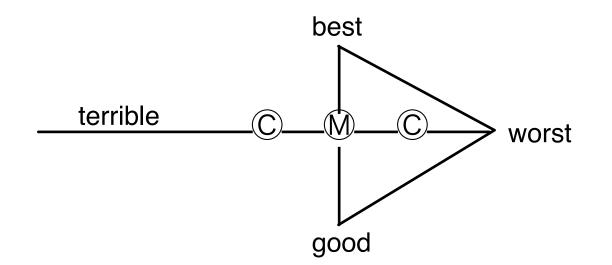
• The 3 points form a triangle

First Idea: Move Away from the Bad Point



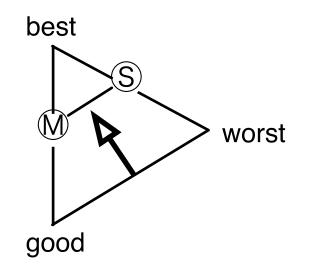
- Compute 3 additional points
 - mid point: $M = \frac{1}{2}(best + good)$
 - reflection point: $\overline{R} = M + (M \text{worst})$
 - extension: R = M + 2(M worst)
- Three cases
 - 1. if $\operatorname{error}(E) < \operatorname{error}(R) < \operatorname{error}(worst)$, replace *worst* with *E*.
 - 2. else if error(R) < error(worst), replace *worst* with *R*.
 - 3. else try something else

Second Idea: Well, Not Too Far Away



- Compute 2 additional points
 - C_1 point between worst and $M: C_1 = M + \frac{1}{2}(M worst)$
 - C_2 point between M and R: $C_2 = M + \frac{3}{2}(\tilde{M} worst)$.
- Three cases
 - 1. if $\operatorname{error}(C_1) < \operatorname{error}(worst)$ and $\operatorname{error}(C_1) < \operatorname{error}(C_2)$, replace *worst* with C_1 .
 - 2. if $\operatorname{error}(C_2) < \operatorname{error}(worst)$ and $\operatorname{error}(C_2) < \operatorname{error}(C_1)$, replace *worst* with C_2 .
 - 3. else continue

Third Idea: Move Closer to Best Point



- Compute 1 additional point
 - *S* point between *worst* and *best*: $S = \frac{1}{2}(best + worst)$.
- Shrink triangle

Simplex in High Dimensions

- Process of updates is iterated until the points converge
- Typically very quick
- More dimensions: more points
 - n + 1 points for n parameters
 - midpoint *M* is the center of all points except *worst*
 - in final case, all good points moved towards midpoints closer to best
- Once optimum is found
 - generate n-best list
 - iterate

Summary

- Reframing probabilistic model as log-linear model with weights
- Discriminative training task: set weights
- Generate n-best candidate translations from search graph
- Reranking
- Powell search (Och's MERT)
- Simplex algorithm