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1The Story so Far: Generative Models

• The definition of translation probability follows a mathematical derivation

argmaxep(e|f) = argmaxep(f |e) p(e)

• Occasionally, some independence assumptions are thrown in
for instance IBM Model 1: word translations are independent of each other

p(e|f , a) =
1

Z

∏
i

p(ei|fa(i))

• Generative story leads to straight-forward estimation
– maximum likelihood estimation of component probability distribution
– EM algorithm for discovering hidden variables (alignment)
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2Log-linear Models

• IBM Models provided mathematical justification for multiplying components

pLM × pTM × pD

• These may be weighted
p
λLM
LM × p

λTM
TM × p

λD
D

• Many components pi with weights λi∏
i

pλii

• We typically operate in log space∑
i

λi log(pi) = log
∏
i

pλii
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3Knowledge Sources

• Many different knowledge sources useful

– language model
– reordering (distortion) model
– phrase translation model
– word translation model
– word count
– phrase count
– character count
– drop word feature
– phrase pair frequency
– additional language models

• Could be any function h(e, f,a)

h(e, f,a) =

{
1 if ∃ei ∈ e, ei is verb
0 otherwise
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4Set Feature Weights

• Contribution of components pi determined by weight λi

• Methods

– manual setting of weights: try a few, take best
– automate this process

• Learn weights

– set aside a development corpus
– set the weights, so that optimal translation performance on this development

corpus is achieved
– requires automatic scoring method (e.g., BLEU)
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5Discriminative vs. Generative Models

• Generative models

– translation process is broken down to steps
– each step is modeled by a probability distribution
– each probability distribution is estimated from data by maximum likelihood

• Discriminative models

– model consist of a number of features (e.g. the language model score)
– each feature has a weight, measuring its value for judging a translation as

correct
– feature weights are optimized on development data, so that the system output

matches correct translations as close as possible
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6Overview

• Generate a set of possible translations of a sentence (candidate translations)

• Each candidate translation represented using a set of features

• Each feature derives from one property of the translation

– feature score: value of the property
(e.g., language model probability)

– feature weight: importance of the feature
(e.g., language model feature more important than word count feature)

• Task of discriminative training: find good feature weights

• Highest scoring candidate is best translation according to model
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7Discriminative Training Approaches

• Reranking: 2 pass approach

– first pass: run decoder to generate set of candidate translations
– second pass:
∗ add features
∗ rescore translations

• Tuning

– integrate all features into the decoder
– learn feature weights that lead decoder to best translation

• Large scale discriminative training (next lecture)

– thousands or millions of features
– optimization of the entire training corpus
– requires different training methods
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8

finding candidate translations
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9Finding Candidate Translations

• Number of possible translations exponential with sentence length

• But: we are mainly interested in the most likely ones

• Recall: decoding

– do not list all possible translation
– beam search for best one
– dynamic programming and pruning

• How can we find set of best translations?
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10Search Graph

are
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• Decoding explores space of possible translations
by expanding the most promising partial translations

⇒ Search graph
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11Search Graph
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• Keep transitions from recombinations
– without: total number of paths = number of full translation hypotheses
– with: combinatorial expansion

• Example
– without: 4 full translation hypotheses
– with: 10 different full paths

• Typically many more paths due to recombination
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12Word Lattice

<s> are

<s> it

<s> he
he goes

does not not go

not to

to house

go home

to go
go house

goes not

it goes

not home

-1.220

does n
ot

-2
.1
46

no
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-1.146to house

-0.
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he
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it-1.220are
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-1.878
not
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go

-1.451to

-1.439
home

-1.591
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home

-1.248
go -0.825

house

• Search graph as finite state machine

– states: partial translations
– transitions: applications of phrase translations
– weights: added scores by phrase translation
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13Finite State Machine

• Formally, a finite state machine, is a q quintuple (Σ, S, s0, δ, F ), where

– Σ is the alphabet of output symbols (in our case, the emitted phrases)
– S is a finite set of states
– s0 is an initial state (s0 ∈ S), (in our case the initial hypothesis)
– δ is the state transition function δ : S × Σ→ S
– F is the set of final states (in our case representing hypotheses that have

covered all input words).

• Weighted finite state machine

– scores for emissions from each transition π : S × Σ× S → R
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14N-Best List

rank score sentence
1 -4.182 he does not go home
2 -4.334 he does not go to house
3 -4.672 he goes not to house
4 -4.715 it goes not to house
5 -5.012 he goes not home
6 -5.055 it goes not home
7 -5.247 it does not go home
8 -5.399 it does not go to house
9 -5.912 he does not to go house
10 -6.977 it does not to go house

• Word graph may be too complex for some methods

⇒ Extract n best translations
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15Computing N-Best Lists
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• Representing the graph with back transitions

• Include ”detours” with cost
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16Path 1

-0.152

<s> he

does not not go

go home

-1.065
-0.

556

he

does not
go

home

-0.830

-1
.7
30

• Follow back transitions

⇒ Best path: he does not go home

• Keep note of detours from this path
Base path Base cost Detour cost Detour state
final -0 -0.152 to house
final -0 -0.830 not home
final -0 -1.065 does not
final -0 -1.730 go house
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17Path 2

<s> he

does not not go
to house

-1.065

-0.338

-0.
556

he

does not
go

to house
-0.152

• Take cheapest detour

• Afterwards, follow back transitions

• Second best path: he does not go to house

• Add its detours to priority queue
Base path Base cost Detour cost Detour state
to house -0.152 -0.338 goes not
final -0 -0.830 not home
final -0 -1.065 does not
to house -0.152 -1.065 it
final -0 -1.730 go house
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18Path 3

<s> he
he goes

to house

goes not

-0
.0
43

-0.338to house

-0.
556

he

goes
not

-0.152

• Third best path: he goes not to house

• Add its detours to priority queue
Base path Base cost Detour cost Detour state
to house / goes not -0.490 -0.043 it goes
final -0 -0.830 not home
final -0 -1.065 does not
to house -0.152 -1.065 it
final -0 -1.730 go house
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19Scoring N-Best List

• Two opinions about items in the n-best list

– model score: what the machine translation system thinks is good
– error score: what is actually a good translation

• Error score can be computed with reference translation

– recall: lecture on evaluation
– canonical metric: BLEU score

• Some methods require sentence-level scores

– commonly used: BLEU+1
– adjusted precision: correct matches+1

total+1
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20Scored N-Best List

• Reference translation: he does not go home

• N-best list

Translation Feature values BLEU+1
it is not under house -32.22 -9.93 -19.00 -5.08 -8.22 -5 27.3%
he is not under house -34.50 -7.40 -16.33 -5.01 -8.15 -5 30.2%
it is not a home -28.49 -12.74 -19.29 -3.74 -8.42 -5 30.2%
it is not to go home -32.53 -10.34 -20.87 -4.38 -13.11 -6 31.2%
it is not for house -31.75 -17.25 -20.43 -4.90 -6.90 -5 27.3%
he is not to go home -35.79 -10.95 -18.20 -4.85 -13.04 -6 31.2%
he does not home -32.64 -11.84 -16.98 -3.67 -8.76 -4 36.2%
it is not packing -32.26 -10.63 -17.65 -5.08 -9.89 -4 21.8%
he is not packing -34.55 -8.10 -14.98 -5.01 -9.82 -4 24.2%
he is not for home -36.70 -13.52 -17.09 -6.22 -7.82 -5 32.5%

• What feature weights push up the correct translation?
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21Rerank Approach

training input 
sentences

base model

n-best list of 
translations

reference 
translations

labeled 
training data

reranker

learn

decode

combine

test input 
sentence

base model

n-best list of 
translations

reranker

decode

translation

rerank

Training Testing

additional 
features

additional 
features

combine
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22

parameter tuning
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23Parameter Tuning

• Recall log-linear model
p(x) = exp

n∑
i=1

λihi(x)

• Overall translation score p(x) is combination of components hi(x), weighted by
parameters λi

• Setting parameters as supervised learning problem

• Two methods

– Powell search
– Simplex algorithm
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24Experimental Setup

• Training data for translation model: 10s to 100s of millions of words

• Training data for language model: billions of words

• Parameter tuning

– set a few weights (say, 10–15)
– tuning set of 1000s of sentence pairs sufficient

• Finally, test set needed
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25Minimum Error Rate Training

• Optimize metric: e.g., BLEU

• Tuning set of 1000s of sentences,
for each we have n-best list of translations

• Different weight setting
→ different translations come out on top
→ BLEU score

• Even with 10-15 features: high dimensional space, intractable
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26Bad N-Best Lists?

• N-Best list produced with initial weight setting

• Decoding with optimized weight settings
→may produce completely different translations

⇒ Iterate optimization, accumulate n-best lists

Philipp Koehn Machine Translation: Tuning 26 February 2015



27Parameter Tuning

decoder

n-best list of 
translations

decode

optimize 
parameters

new 
parameters

initial 
parameters

final 
parameters

apply

if converged

if changed
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28

powell search
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29Och’s minimum error rate training (MERT)

• Line search for best feature weights

'

&

$

%

given: sentences with n-best list of
translations
iterate n times

randomize starting feature weights
iterate until convergences

for each feature
find best feature weight
update if different from

current
return best feature weights found in any
iteration
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30Find Best Feature Weight

• Core task:

– find optimal value for one parameter weight λ
– ... while leaving all other weights constant

• Score of translation i for a sentence f:

p(ei|f) = λai + bi

• Recall that:

– we deal with 100s of translations ei per sentence f
– we deal with 100s or 1000s of sentences f
– we are trying to find the value λ so that over all sentences, the error score is

optimized
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31One Translations for One Sentence

p(x)

λ

①

• Probability of one translation p(ei|f) is a function of λ

p(ei|f) = λai + bi
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32N-Best Translations for One Sentence

p(x)

λ

①②

④

⑤

③

• Each translation is a different line
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33Upper Envelope

p(x)

λ

①②

④

⑤

③

• Highest probability translation depends on λ
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34Threshold Points

p(x)

λ

①②

④

⑤

① ⑤②

③

argmax p(x)

t1
t2

• There are one a few threshold points tj where the model-best line changes
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35Finding the Optimal Value for λ

• Real-valued λ can have infinite number of values

• But only on threshold points, one of the model-best translation changes

⇒ Algorithm:

– find the threshold points
– for each interval between threshold points
∗ find best translations
∗ compute error-score

– pick interval with best error-score
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36BLEU Error Surface

• Varying one parameter: a rugged line with many local optima

 0.25
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37Pseudo Code

Input: sentences with n-best list of translations, initial parameter values
1: repeat
2: for all parameter do
3: set of threshold points T = {}
4: for all sentence do
5: for all translation do
6: compute line l: parameter value → score
7: end for
8: find line l with steepest descent
9: while find line l2 that intersects with l first do

10: add parameter value at intersection to set of threshold points T
11: l = l2
12: end while
13: end for
14: sort set of threshold points T by parameter value
15: compute score for value before first threshold point
16: for all threshold point t ∈ T do
17: compute score for value after threshold point t
18: if highest do record max score and threshold point t
19: end for
20: if max score is higher than current do update parameter value
21: end for
22: until no changes to parameter values applied
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38

simplex algorithm
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39Simplex Algorithm

• Similar to Powell search

• Less calculations of the current error

– recall: error is computed over the entire tuning set
– brute force method requires reranking of 1000s of n-best lists

• Similar to gradient descent methods

– try to find direction in which the optimum lies
– here: we cannot compute derivative
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40Simplex Algorithm

• Randomly generate three points in the high dimensional space

– high dimensional space = each dimension is one of the λi parameters
– a point in the space = each parameter set to a value
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41Simplex Algorithm

worst

good

best

• We can score each of these points

– use parameter settings to rerank all the n-best lists
– compute overall tuning set score (BLEU)

• Rank the 3 points into best, good, worst
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42Simplex Algorithm

worst

good

best

• The 3 points form a triangle
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43First Idea: Move Away from the Bad Point

Ⓡ worst

good

best

Ⓔ Ⓜ

• Compute 3 additional points
– mid point: M = 1

2(best + good)
– reflection point: R = M + (M −worst)
– extension: R = M + 2(M −worst)

• Three cases
1. if error(E) < error(R) < error(worst), replace worst with E.
2. else if error(R) < error(worst), replace worst with R.
3. else try something else
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44Second Idea: Well, Not Too Far Away

worst

good

best

ⒸⒸ Ⓜterrible

• Compute 2 additional points

– C1 point between worst and M : C1 = M + 1
2(M −worst)

– C2 point between M and R: C2 = M + 3
2(M −worst).

• Three cases

1. if error(C1) < error(worst) and error(C1) < error(C2), replace worst with C1.
2. if error(C2) < error(worst) and error(C2) < error(C1), replace worst with C2.
3. else continue
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45Third Idea: Move Closer to Best Point

worst

good

best

Ⓜ
Ⓢ

• Compute 1 additional point

– S point between worst and best: S = 1
2(best + worst).

• Shrink triangle
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46Simplex in High Dimensions

• Process of updates is iterated until the points converge

• Typically very quick

• More dimensions: more points

– n+ 1 points for n parameters
– midpoint M is the center of all points except worst
– in final case, all good points moved towards midpoints closer to best

• Once optimum is found

– generate n-best list
– iterate
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47Summary

• Reframing probabilistic model as log-linear model with weights

• Discriminative training task: set weights

• Generate n-best candidate translations from search graph

• Reranking

• Powell search (Och’s MERT)

• Simplex algorithm
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