Machine Translation & "Foundational" Models

601.764

1/26/23

Warry Weary

Warren Weaver, American scientist (1894-1978)

Image courtesy of: Biographical Memoirs of the National Academy of Science, Vol. 57 When I look at an article in Russian, I say: "This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode".

Progress in MT

		nal SMT from IBM	speech/vision 2015: Seminal NMT 2016: Google annou	ep learning success in paper (RNN+attention) nces NMT in production hitecture: Transformer
Warren Weaver's memo	Founding of SYSTRAN Development of Rule based MT (RBMT)	Open-sou	DES, GALE, BOLT progr rce of Moses toolkit ent of Statistical MT (S	
1947	1968	1993	Early 2000s	2010s-Present

Rule-Based Machine Translation

- ♦ Build Dictionaries
- Write Transformation Rules

"have" :=

```
if
```

subject(animate)
and object(owned-by-subject)
then
translate to "kade... aahe"
if
subject(animate)
and object(kinship-with-subject)
then
translate to "laa... aahe"
if
subject(inanimate)
then
translate to "madhye... aahe"

Data, Data, Datal Data,

♦ Learn Dictionaries from Data

♦ Learn Dictionaries from Data "farok" \rightarrow "jjat"

- ♦ Learn Dictionaries from Data "farok" → "jjat"
- ♦ Learn "Rules" from Data
- ♦ 1980 2015

Bitexts

Đại học Johns hopkins được thành lậpLinh vật là một con chim giẻ cùi màu xanhGiẻ cùi xanh là linh vậtLacrosse là một môn thể thao nổi tiếng

Machine Translation (Abstraction)

Machine Translation (SMT) ... simplified

16

Statistical MT	Neural MT
Input: Source Sentence	

Statistical MT	Neural MT
Input: Source Sentence	Input: Source Sentence

Statistical MT	Neural MT
Input: Source Sentence	Input: Source Sentence
Output: Target Sentence	

Statistical MT	Neural MT
Input: Source Sentence	Input: Source Sentence
Output: Target Sentence	Output: Target Sentence

Statistical MT	Neural MT
Input: Source Sentence	Input: Source Sentence
Output: Target Sentence	Output: Target Sentence
Automatically Learn from Bitext	

Statistical MT	Neural MT
Input: Source Sentence	Input: Source Sentence
Output: Target Sentence	Output: Target Sentence
Automatically Learn from Bitext	Automatically Learn from Bitext

Statistical MT	Neural MT
Input: Source Sentence	Input: Source Sentence
Output: Target Sentence	Output: Target Sentence
Automatically Learn from Bitext	Automatically Learn from Bitext
Probabilistic Translation Model	

Statistical MT	Neural MT
Input: Source Sentence	Input: Source Sentence
Output: Target Sentence	Output: Target Sentence
Automatically Learn from Bitext	Automatically Learn from Bitext
Probabilistic Translation Model	
Probabilistic Reordering Model	

Statistical MT	Neural MT
Input: Source Sentence	Input: Source Sentence
Output: Target Sentence	Output: Target Sentence
Automatically Learn from Bitext	Automatically Learn from Bitext
Probabilistic Translation Model	
Probabilistic Reordering Model	
Probabilistic Language Model	

Statistical MT	Neural MT
Input: Source Sentence	Input: Source Sentence
Output: Target Sentence	Output: Target Sentence
Automatically Learn from Bitext	Automatically Learn from Bitext
Probabilistic Translation Model	One Neural Model (Probabilistic)
Probabilistic Reordering Model	
Probabilistic Language Model	

- ♦ Also a type of Statistical MT
- * Represent words in high-dimensional, continuous, space
- $\Rightarrow P(e|f)$

Vocabulary
One-Hot Vector

- ♦ Words correspond to index in vector
- \Rightarrow *Fixed* size

One-Hot Vector

Dictionary The And I Dog Johns Me Cat

Johns Hopkins was founded in

 $0 0 0 0 0 1 \dots 0 0$

Vocabulary Size

- Sixed Input & Output Vector Dimensions
- ♦ Out-of-vocabulary (OOVs)

Character Level

- ♦ No OOVs
- ♦ Very long sequences

Byte Pair Encoding

- Subword Unit
- ♦ Based on a compression algorithm
- ♦ Start small, repeatedly combine

peter piper picked a peck of pickled peppers

p@ e@ t@ e@ r p@ i@ p@ e@ r p@ i@ c@ k@ e@ d a p@ e@ c@ k o@ f p@ i@ c@ k@ l@ e@ d p@ e@ p@ p@ e@ r@ s

	Vocabulary	Rules
р	е	
t	r	
i	С	
k	d	
а	Ο	
f	1	
S		

pa ea ta ea r pa ia pa ea r pa ia ca ka ea d a pa ea ca k oa f pa ia ca ka la ea d pa ea pa pa ea ra s

	Vocabulary	Rules
p t k a f s	e r c d o I pe@	p@ e@ → pe@

pe@ t@ e@ r p@ i@ p@ e@ r p@ i@ c@ k@ e@ d a pe@ c@ k o@ f p@ i@ c@ k@ l@ e@ d pe@ p@ pe@ r@ s

	Vocabulary	Rules
p t k a f s pi@	e r c d o I pe@	p@ e@ → pe@ p@ i@ → pi@

pe@ t@ e@ r pi@ p@ e@ r pi@ c@ k@ e@ d a pe@ c@ k o@ f pi@ c@ k@ l@ e@ d pe@ p@ pe@ r@ s

	Vocabulary	Rules
p t k a f s pi@	e r c d o I pe@ pic@	$p@ e@ \rightarrow pe@$ $p@ i@ \rightarrow pi@$ $pi@ c@ \rightarrow pic@$

pe@ t@ e@ r pi@ p@ e@ r pic@ k@ **e@ d** a pe@ c@ k o@ f pic@ k@ l@ **e@ d** pe@ p@ pe@ r@ s

	Vocabulary	Rules
p t k a f s pi@	e r c d o I pe@ pic@	$p@ e@ \rightarrow pe@$ $p@ i@ \rightarrow pi@$ $pi@ c@ \rightarrow pic@$ $e@ d \rightarrow ed$

peter piper picked a peck of pickled peppers

Vocabulary		Rules	
p t i k a f s pi@	e r c d o I pe@ pic@	$p@ e@ \rightarrow pe@$ $p@ i@ \rightarrow pi@$ $pi@ c@ \rightarrow pic@$ $e@ d \rightarrow ed$	
of		o@ f → of	

How Good are our Translations?

- The university was founded in the year following his death and was dedicated to their only son.
- ♦ The university was following his death and was dedicated to their only son.
- ♦ Machine Translation always works perfectly.

MT Evaluation

- Human Evaluation (Expensive, but best)
- ♦ Automatic (Cheap, can be correlated)

- Modified *n*-gram precision
- BiLingual Evaluation Understudy

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus.

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus

Unigrams	Bigrams	Trigrams	4-grams
14/16			

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus

Unigrams	Bigrams	Trigrams	4-grams
14/16			

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus

Unigrams	Bigrams	Trigrams	4-grams
14/16			

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15		

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	/14	

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus

HYP.

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	9/14	

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	9/14	/13

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	9/14	/13

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus

•The Blue Jays are mascot of

The Blue Jays are mascot o	f Johns Hopkins Unive	ersity University <mark>a</mark>	nd can be seen around
----------------------------	-----------------------	----------------------------------	-----------------------

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	9/14	/13

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	9/14	/13

The Blue Jays are the mascot of Johns Hopkins University and can be seen around campus

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	9/14	4/13

$$BLEU = \min\left(1, e^{1 - \frac{len(gold)}{len(hyp)}}\right) \sqrt[4]{\prod_{i=1}^{4} precision(i)}$$

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	9/14	4/13

$$BLEU = \min\left(1, e^{1 - \frac{len(gold)}{len(hyp)}}\right) \sqrt[4]{\prod_{i=1}^{4} precision(i)}$$

Brevity Penalty $\sqrt{\sum_{i=1}^{4} precision(i)}$

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	9/14	3/13

$$BLEU = \min\left(1, e^{1 - \frac{len(gold)}{len(hyp)}}\right) \sqrt[4]{\prod_{i=1}^{4} precision(i)}$$
$$BLEU = \min\left(1, e^{1 - \frac{16}{15}}\right) \sqrt[4]{0.138}$$

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	9/14	3/13

$$BLEU = \min\left(1, e^{1 - \frac{len(gold)}{len(hyp)}}\right) \sqrt[4]{\prod_{i=1}^{4} precision(i)}$$
$$BLEU = 0.94 \sqrt[4]{0.138}$$

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	9/14	3/13

$$BLEU = \min\left(1, e^{1 - \frac{len(gold)}{len(hyp)}}\right) \sqrt[4]{\prod_{i=1}^{4} precision(i)}$$
$$BLEU = 0.94 * 0.609$$
$$BLEU = 0.57$$

Unigrams	Bigrams	Trigrams	4-grams
14/16	12/15	9/14	3/13

- ♦ Calculate over <u>entire</u> test set (not one sentence)
- < 10 Pretty useless
- $10-20 \dots$ can get some meaning
- $20 30 \dots$ looks decent
- \Rightarrow > 30 starts getting pretty good

- ♦ The large house
- ♦ A big mansion

Large Language Models Foundational Models....

Language Modeling

- Create a model of language
- Frequently probabilistic/statistical
- Used for downstream tasks & predictions
Traditional Applications

- Autocorrect
- Translation
- Speech Recognition

Johns

Johns Hopkins

Backoff

RNN-LM

Masked Language Models

- No longer need to view everything left-to-right*
- Mask out random words in a sentence, not the sequence

BERT

- Masked Language Model
- Next Sentence
 Prediction

mBERT 104 langs

RoBERTa

- Robustly Optimized BERT Pretraining
 Approach
- BPE
- No Next Sentence Prediction
- Focus on Hyperparameters

XLM-R

- 100 Languages
- RoBERTa not BERT
- Not translation (unlike XLM)

Conneau et al. 2019

Curse of Multilinguality

- AFAIK, first mentioned in XLM-R Paper
- More languages hurt performance
- Beneficial for Low-Resource over High

Figure 2: The transferinterference trade-off: Lowresource languages benefit from scaling to more languages, until dilution (interference) kicks in and degrades overall performance.

Conneau et al. 2019

BiBERTs

- 2 Languages
- Lan et al., 2020
- "An Empirical Study of Pre-trained Transformers for Arabic Information Extraction"
- Increased Performance on Cross-Lingual (not multilingual) tasks

Encoder	BLEU			
Public	12.7			
None	14.9			
mBERT GBv4	15.7 15.7			
XLM-R L64K L128K	16.0 16.2 15.8			

Table 2: BLEU scores of MT systems with different pre-trained encoders on English–Arabic IWSLT'17.

Yarmohammadi et al. 2021

Brief Detour...

Sutskever et al. 2014 Vaswani et al. 2017

91

GPT-3

- Generative Pretrained Transformer
- 2048 Context Length
- 175 Billion Parameters
- DECODER

BART

DenoiserEncoder-Decoder

• Lewis et al. 2020

B D Bidirectional Encoder A _ C _ E

(a) BERT: Random tokens are replaced with masks, and the document is encoded bidirectionally. Missing tokens are predicted independently, so BERT cannot easily be used for generation.

(b) GPT: Tokens are predicted auto-regressively, meaning GPT can be used for generation. However words can only condition on leftward context, so it cannot learn bidirectional interactions.

(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a document has been corrupted by replacing spans of text with a mask symbols. The corrupted document (left) is encoded with a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder. For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).

BART

Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

mBART

- Multilingual BART
- Liu et al. 2020
- 25, 50, 06
 Languages?

Figure 1: Framework for our Multilingual Denoising Pre-training (left) and fine-tuning on downstream MT tasks (right), where we use (1) sentence permutation (2) word-span masking as the injected noise. A special language id token is added at both the encoder and decoder. One multilingual pre-trained model is used for all tasks.

Many More....

Gopher 280 Billion

- Chinchilla 70 Billion
- LaMDA 137 Billion
- PaLM 540 Billion

Scaling behavior of PaLM on a subset of 58 BIG-bench tasks.

Figure 1: A diagram of our text-to-text framework. Every task we consider—including translation, question answering, and classification—is cast as feeding our model text as input and training it to generate some target text. This allows us to use the same model, loss function, hyperparameters, etc. across our diverse set of tasks. It also provides a standard testbed for the methods included in our empirical survey. "T5" refers to our model, which we dub the "Text-to-Text Transfer Transformer".

97

Figure 1: Page counts per language in mC4 (left axis), and percentage of mT5 training examples coming from each language, for different language sampling exponents α (right axis). Our final model uses α =0.3.

Model	Architecture	Parameters	# languages	Data source
mBERT (Devlin, 2018) XLM (Conneau and Lample, 2019) XLM-R (Conneau et al., 2020) mBART (Lewis et al., 2020b) MARGE (Lewis et al., 2020a)	Encoder-only Encoder-only Encoder-only Encoder-decoder Encoder-decoder	180M 570M 270M – 550M 680M 960M	104 100 100 25 26	Wikipedia Wikipedia Common Crawl (CCNet) Common Crawl (CC25) Wikipedia or CC-News
mT5 (ours)	Encoder-decoder	300M - 13B	101	Common Crawl (mC4)

Table 1: Comparison of mT5 to existing massively multilingual pre-trained language models. Multiple versions of XLM and mBERT exist; we refer here to the ones that cover the most languages. Note that XLM-R counts five Romanized variants as separate languages, while we ignore six Romanized variants in the mT5 language count.

ERNIE-M

Figure 1: Overview of MMLM, TLM and CAMLM training. The input sentences in sub-figure (a) are monolingual sentences; x and y represent monolingual input sentences in different languages. The input sentences in sub-figures (b) and (c) are parallel sentences; x and y denote the source and target sentences of the parallel sentences, respectively. h indicates the token predicted by the model.

Baidu Key Insight: Back-Translation 96 Languages

ERNIE-M

Rank	Model	Participant	Affiliation	Attempt Date	Avg	Sentence-pair Classification	Structured Prediction	Question Answering	Sentence Retrieval
0		Human		÷	93.3	95.1	97.0	87.8	-
1	ERNIE-M	ERNIE Team	Baidu	Jan 1, 2021	80.9	87.9	75.6	72.3	91.9
2	T-ULRv2 + StableTune	Turing	Microsoft	Oct 7, 2020	80.7	88.8	75.4	72.9	89.3
3	Anonymous3	Anonymous3	Anonymous3	Jan 3, 2021	79.9	88.2	74.6	71.7	89.0
4	Polyglot	MLNLC	ByteDance	Nov 13, 2020	77.8	87.8	72.9	67.4	88.3
5	VECO	DAMO NLP Team	Alibaba	Sep 29, 2020	77.2	87.0	70.4	68.0	88.1
6	FILTER	Dynamics 365 Al Research	Microsoft	Sep 8, 2020	77.0	87.5	71.9	68.5	84.4
7	X-STILTs	Phang et al.	New York University	Jun 17, 2020	73.5	83.9	69.4	67.2	76.5
8	XLM-R (large)	XTREME Team	Alphabet, CMU	×	68.2	82.8	69.0	62.3	61.6
9	mBERT	XTREME Team	Alphabet, CMU		59.6	73.7	66.3	53.8	47.7

Multilingual Language Model Gains Research Attention

XTREME dataset (Hu et al. 2020) http://research.baidu.com/Blog/index-view?id=151

SpanBERT

Figure 1: An illustration of SpanBERT training. The span *an American football game* is masked. The span boundary objective (SBO) uses the output representations of the boundary tokens, x_4 and x_9 (in blue), to predict each token in the masked span. The equation shows the MLM and SBO loss terms for predicting the token, *football* (in pink), which as marked by the position embedding p_3 , is the *third* token from x_4 .

Joshi et al. 2019

SLAM

- Speech and LAnguage Modeling
- Bapna et al.
 2021

Figure 1: (Left) Our model consists of a text embedding layer and a speech-specific stack similar to w2v-BERT, the latter consisting of a ConvNet and a series of N Conformer layers. Both the text and speech output embeddings are fed to a series of N shared Conformer layers. Our unsupervised speech-text pre-training approach consists of self-supervised learning objectives (in blue), including w2v-BERT masked language modeling and contrastive losses, as well as the text BERT objective. This can be combined with supervised alignment losses (in red) which leverage speech-text annotated pairs. We leverage in particular the MLM variant of translation language modeling (TLM) and the ranking loss of speech-text matching (STM). (Right) Once pre-trained, the speech part of the shared architecture can be fine-tuned on speech understanding datasets like recognition or translation. The text part of the architecture can be fine-tuned on language understanding tasks.

mSLAM

Figure 1: Multilingual Speech-Text Pretraining We pre-train a large multilingual speech-text Conformer on 429K hours of unannotated speech data in 51 languages, 15TBs of unannotated text data in 101 languages, as well as 2.3k hours of speech-text ASR data.

Bapna et al. 2021