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Homer Dudley’s Voder 1940

https://120years.net/the-voder-vocoderhomer-
dudleyusal1940/






“The Voder was first unveiled in 1939 at the New York World Fair (where it was
demonstrated at hourly intervals) and later in 1940 1n San Francisco. There were twenty
trained operators known as the ‘girls’ who handled the machine much like a musical
instrument such as a piano or an organ, but they managed to successfully produce human
speech during the demonstrations. In the New York Fair demonstration, which was repeated
frequently, the announcer gave a simple running discussion of the circuit to which the girl
operator replied through the Voder. This was done by manipulating fourteen keys with the
fingers, a bar with the left wrist and a foot pedal with the right foot.”

https://120years.net/the-voder-vocoderhomer-
dudleyusal1940/



Voder at the world fair
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Voder keyboard and wrist controls




“The Voder was outwardly similar to a parlor organ. The white keys produced vowels; the
black keys acted as “stop” consonants (such as ¢ and d), cutting off airflow; and a foot pedal
changed the pitch.”

https://muse.jhu.edu/article/491050



Still to this day...
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UNIT SELECTION IN A CONCATENATIVE SPEECH SYNTHESIS SYSTEM
USING A LARGE SPEECH DATABASE

Andrew J. Hunt and Alan W, Blabk

ATR Interpreting Telecommunications Research Labs.
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan
andrew,awb@itl.atr.co.jp




& Select and concatenate units from a large database
& Transition network similar to HMMs

& ... Experiments



“Both training methods have been applied to a range of synthesis databases including
Japanese and English, and male and female speech. Synthesized speech produced from
weights of either training method 1s consistently better than that produced with hand-tuned
weights. However, hand tuning of global unit selection parameters can improve the quality of

synthesis with automatically trained weights”



Review

Statistical parametric speech synthesis

Heiga Zen *"*, Keiichi Tokuda®, Alan W. Black ©
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Fig. 1. Overview of general unit-selection scheme. Solid lines represent
target costs and dashed lines represent concatenation costs.
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Fig. 2. Overview of clustering-based unit-selection scheme. Solid lines
represent target costs and dashed lines represent concatenation costs.




Speech signal
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Fig. 3. Block-diagram of HMM-based speech synthesis system (HTS).
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Fig. 5. Overview of HMM-based speech synthesis scheme.



Transformed Model

Linear Transforms

General Model Regression Class

-

Fig. 6. Overview of linear-transformation-based adaptation technique.
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WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aaron van den Oord Sander Dieleman Heiga Zen'
Karen Simonyan Oriol Vinyals Alex Graves
Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk } @ google.com
Google DeepMind, London, UK

" Google, London, UK



WaveNet Examples

& https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio


https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio

Figure 2: Visualization of a stack of causal convolutional layers.
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Figure 3: Visualization of a stack of dilated causal convolutional layers.




Subjective S-scale MOS in naturalness
Speech samples North American English Mandarin Chinese
LSTM-RNN parametric 3.67 £ 0.098 3.79 £ 0.084
HMM-driven concatenative 3.86 £ 0.137 3.47 + 0.108
WaveNet (L+F) 4.21 + 0.081 4.08 + 0.085
Natural (8-bit p-law) 4.46 + 0.067 4.25 + 0.082
Natural (16-bit linear PCM) 4.55 £+ 0.075 421 £+ 0.071

Table 1: Subjective 5-scale mean opinion scores of speech samples from LSTM-RNN-based sta-
tistical parametric, HMM-driven unit selection concatenative, and proposed WaveNet-based speech
synthesizers, 8-bit u-law encoded natural speech, and 16-bit linear pulse-code modulation (PCM)
natural speech. WaveNet improved the previous state of the art significantly, reducing the gap be-
tween natural speech and best previous model by more than 50%.



Best baseline WaveNet (L+F)
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NATURAL TTS SYNTHESIS BY CONDITIONING WAVENET ON MEL SPECTROGRAM
PREDICTIONS

Jonathan Shen', Ruoming Pang', Ron J. Weiss', Mike Schuster', Navdeep Jaitly', Zongheng Yang*?,

Zhifeng Chen', Yu Zhang', Yuxuan Wang', RJ Skerry-Ryan', Rif A. Saurous', Yannis Agiomyrgiannakis',
and Yonghui Wu'

lGoogle, Inc., EUniversity of California, Berkeley,
{jonathanasdf, rpang, yonghui}@google.com

Tactotron2



Waveform samples

i
WaveNet Mol
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A detailed look at Tacotron 2's model architecture. The lower half of the image describes the sequence-to-sequence
model that maps a sequence of letters to a spectrogram. For technical details, please refer to the paper.
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Model Description

The Tacotron 2 and WaveGlow model form a text-to-speech system that enables user to synthesise a natural
sounding speech from raw transcripts without any additional prosody information. The Tacotron 2 model
produces mel spectrograms from input text using encoder-decoder architecture. WaveGlow (also available

via torch.hub) is a flow-based model that consumes the mel spectrograms to generate speech.

This implementation of Tacotron 2 model differs from the model described in the paper. Our

implementation uses Dropout instead of Zoneout to regularize the LSTM layers.




System MOS

Parametric 3.492 + 0.096
Tacotron (Griffin-Lim) 4.001 £ 0.087
Concatenative 4.166 = 0.091
WaveNet (Linguistic) 4.341 4 0.051
Ground truth 4.582 £+ 0.053

Tacotron 2 (this paper) 4.526 + 0.066

Table 1. Mean Opinion Score (MOS) evaluations with 95% confi-
dence intervals computed from the t-distribution for various systems.
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Worse Worse Same Better Better

Fig. 2. Synthesized vs. ground truth: 800 ratings on 100 items.




Tactotron2 Examples

& https://google.github.i0/tacotron/publications/tacotron2/index.html



https://google.github.io/tacotron/publications/tacotron2/index.html
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Learning to Speak Fluently in a Foreign Language:
Multilingual Speech Synthesis and Cross-Language Voice Cloning

Yu Zhang, Ron J. Weiss, Heiga Zen, Yonghui Wu, Zhifeng Chen, RJ Skerry-Ryan, Ye Jia,
Andrew Rosenberg, Bhuvana Ramabhadran

Google

{ngyuzh, ronw}@google.com

Uses Tacotron



Iinference Network Adversarial Loss

Mel Residual Residual Gradient Speaker
spectrogram Encoder Reversal Classifier

Text Text :
—

Speaker Language
Encoding | Embedding | | Embedding

Figure 1: Overview of the components of the proposed model.
Dashed lines denote sampling via reparameterization [21 ] dur-
ing training. The prior mean is always use during inference.




Table 1: Speaker similarity Mean Opinion Score (MOS) com-
paring ground truth audio from speakers of different languages.
Raters are native speakers of the target language.

Tareet Language
Source © guag

Language EN ES CN

EN 4.40+0.07 1.72+£0.15 1.80+0.08
ES 1.4940.06 4.39+0.06 2.14+0.09
CN 1.32+0.06  2.06+0.09 3.51+0.12




Table 4: Naturalness and speaker similarity MOS of cross-language voice cloning of the full multilingual model using phoneme inputs.

EN target ES target CN target

Source I e
Language Model Naturalness Similarity Naturalness Similarity Naturalness Similarity

- Ground truth (self-similarity) 4.60+0.05 4.40+0.07 4.37+0.06 4.39+0.06 4.42+0.06 3.51+0.12

EN 84EN 3ES 5CN 437+0.12 4.63+0.06 4.20+0.07 3.50+0.12 3.94+0.09 3.03+0.10
language ID fixed to EN - - 3.68+0.07 4.06+£0.09 3.09+0.09 3.20+0.09

ES 84EN 3ES 5CN 428+0.10 3.24+0.09 4.37+0.04 4.01£0.07 3.85+0.09 2.93+0.12
CN 84EN 3ES 5CN 4.49+0.08 2.46+0.10 4.56+0.08 2.48+0.09 4.09+0.10 3.45+0.12
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One Model, Many Languages: Meta-learning for Multilingual Text-to-Speech

Tomds Nekvinda, Ondrej DuSek

Charles University, Faculty of Mathematics and Physics, Prague, Czechia

tomlnegindi.cz, odusek@ufal.mff.cuni.cz

Tacotron 2



Parameter generator Convolutional text encoder  Tacotron-style decoder
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Figure 1: Diagram of our model. The meta-network generates
parameters of language-specific convolutional text encoders.
Encoded text inputs enhanced with speaker embeddings are read
by the decoder. The adversarial classifier suppresses speaker-
dependent information in encoder outputs.




For training, we used the CSS10 dataset and our new small dataset based on Common Voice
recordings in five languages

Table 1: Total data sizes per language (hours of audio data) in
our cleaned CSS10 (CSS) and Common Voice (CV) subsets.

DE EL SP FI FR HU JP NL RU ZH

CSS 154 35 209 9.7 169 95 143 11.7 17.7 5.6
CV 48 N/A NA NA 30 NA NA 13 34 10




Table 2: Left: CERs of ground-truth recordings (GT) and recordings produced by monolingual and the three examined multilingual
models. Right: CERs of the recordings synthesized by GEN and SHA trained on just 600 or 900 training examples per language. Best
results for the given language are shown in bold; “*” denotes statistical significance (established using paired t-test; p < 0.05).

GT SGL SHA SEP GEN SHA 600 SHA 900 GEN 600 GEN 900
DE | 48 +46 7.3 +6.0 83+6.0 153+6.0 *5.8 + 5.3 13.24+89 124+ 8.0 15,6 94 125 +9.3
EL | 8.7+6.9 N/A 11.4+83 222483 116471 |[1684+97 1604+102 142487 147+938
SP | 394+46 70x108 72+65 10.2+8.1 7.0 9.8 08+7.5 900+ 84 8.1+60 *7.61+5.9
FI 69+104 186+126 10.3+8.0 18.1+114 104+70 |182+122 184 +13.2 *13.24+109 14.0+ 10.6
FR [11.2+7.3 2524126 300+ 143 545+21.9 *19.0 £12.9 [40.2 +15.8 37.6 £16.2 329+ 13.2 #27.2 4 12.2
HU| 63+6.1 158495 1594106 1884+99 *135+83 |(214+104 21.3+13.0 *16.5+104 18.0+ 104
JP [19.0+9.3 2884+ 113 2724+ 11.8 33.74+13.5 251 +12.2 |325+12.8 322+150 299+4+13.0 3094135
NL | 145+74 3344138 31.6+125 490+174 *22.6 +9.6 (378 + 135 304+102 328+123 28.3-+9.8
RU | 1234+ 15.0 455+24.1 4444219 58.1+247 *3454+21.3 604+ 18.6 47.0+20.5 3854+20.1 *34.4+17.9
ZH [146+11.8 62.8 + 185 28.6+ 159 273+ 14.8 *20.5 +£13.6 [40.2 +15.2 39.8 +£18.8 33.0+15.5 *28.4 4 15.6




® Native speaker ~ ® Understand spoken @ Can read No experience

German French Dutch Russian Chinese
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—
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2
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Figure 2: Language abilities of participants of our survey.




Table 3: Mean (with std. dev.) ratings of fluency, naturalness,
voice stability (top) and pronunciation accuracy (middle). The
bottom row shows the number of sentences with word skips.

SHA

GEN

German
French
Dutch

Russian

Chinese
All

30 1.1
28+ 1.0
3.1 0.9
28+ 1.0
27+ 1.3
29+ 1.1

*3.4 1+ 0.9
*3.5 1+ 0.9
*3.7 + 1.0
*3.4 1+ 0.9
*3.5 + 1.2
*3.5 1+ 1.0

German
French
Dutch

Russian

Chinese

All

33+ 1.1
3.1 = 1.1
34+ 1.0
30 1.2
29+ 14
3.1 £ 1.2

*3.7 £ 1.0
*3.7 £ 0.9
*3.9 + 1.1
*3.6 = 1.0
*3.5 £ 1.2
*3.7 = 1.1

Word skips

41/400

38/400

11/400




Code-switching evaluation dataset: We created a new small-
scale dataset especially for code-switching evaluation. We used
bilingual sentences scraped from Wikipedia. For each language,
we picked 80 sentences with a few foreign words (20 sentences
for each of the 4 other languages); Chinese was romanized. We
replaced foreign names with their native forms (see Fig. 3).

German ® Russian @® Dutch ® French ® Chinese

Kpemnb HuxHuM HoBropoa
ganzhoushi est une ville du sud de la province du jiangxishéng en Chine.
De slaat onder veel belangstelling het eerste vat bier aan

Figure 3: Examples of code-switching evaluation sentences.
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Figure 4: Graphs showing distributions of fluency and accuracy
ratings grouped by the dominant language of rated sentences.
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INTERSPEECH 2020
October 25-29, 2020, Shanghai, China

Towards Universal Text-to-Speech

Jingzhou Yang and Lei He

Microsoft, China

{jingy,helei}@microsoft.com




& 1,250 hours of data from 50 language locales
¢ Data in different locales 1s highly unbalanced - Balance
& 20 seconds of data 1s feasible for a new speaker

& 6 minutes for a new language



“The neural vocoder can be any vocoder that converts mel spectrograms to waveforms, e.g.
WaveNet [20], WaveRNN [21] or LPCNet [22]. WaveNet is used in this paper.”

Language- concat
dependent —» Encoder —* + —* Decoder

vocoder
phones ¢
/‘ ‘\ Waveform

Neural

Speaker Language

Speaker [D —»
network network

<+— Language ID

Figure 1: The framework of the multilingual system.
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Figure 2: The t-SNE visualization of the phone embeddings.
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Figure 3: The data distribution over 50 language locales.



Table 1: The naturalness MOS in different languages.

Language
Data size

Rec.

Single

Multi
+L.gB
+SpkB

en-US
20h/150h

4.51x0.10
4.34+0.08
4.30+0.08
4.03+0.09
4.19+0.08

de-DE
10h/30h

4.2240.13
4.1940.08
4.0710.08
4.08+0.08
4.03+0.09

vi-VN
Th/7h

4.23+0.15
4.1410.09
3.83+0.10
4.03+0.09
3.90+0.09

te-IN
5h/5h

4.47x0.13
3.4010.13
3.5910.12
3.89+0.11
3.73£0.11




Table 2: The naturalness MOS to the de-DE speaker.

Multi 3.97+0.10 3.78£0.09 3.54+0.13
+LgB 3.86£0.09 3.79+0.07 3.79+0.11

Table 3: The similarity MOS to the de-DE speaker.

Multi 2.93+0.19 2.69+0.17 2.70+0.17
+LgB 2.98+0.19 2.50+0.18 2.47+0.16




Table 4: The MOS to the new zh-CN speaker.

Naturalness

Language
Rec.

zh-CN

en-US

Similarity

zh-CN

en-US

3.37+0.20

20s

3.78x0.13

4.32+0.12

3.77+£0.12

3.6110.07

Im
5m
10m

3.62+0.07
3.68+0.07

3.72+0.08
3.76+0.08
3.71£0.08

4.21£0.12
4.3240.10
4.20+0.12

3.43+0.12
3.49+0.11
3.3540.12

3.63+0.07

3.61+0.09

4.27+0.11

3.25+0.14

Table 5: The MOS to the new en-GB speaker.

Naturalness

Language
Rec.

en-GB

zh-CN

Similarity

en-GB

zh-CN

4.56x0.11

20s

3.611+0.07

4.49x0.11

2.6010.24

4.080.08

Im
5m
10m

4.1610.09
4.2410.08

3.57+0.08
3.34+0.07

4.36x0.12
4.42+40.12
4.47+0.12

2.26+0.23
2.30£0.23

4.24+0.08 .

3.19+0.08

4.36+0.13

2.36+0.23
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