Multilingual Semantics

Elias Stengel-Eskin Advanced NLP: Multilingual Methods

Goals/questions

- What is semantics?
- What is semantic parsing?
- Methods/data for semantic parsing
- **Multilingual and cross-lingual semantics**

- Logic-based semantic representations
 - 1. Review of logic
 - 2. Challenges
 - 3. Thematic roles
 - 4. Neo-Davidsonian Event Semantics
- 2. Abstract Meaning Representation (AMR)
 - 1. What is it?
 - 2. Problems it solves
 - 3. Problems it has
 - 4. Multilingual resources
- 3. Universal Dependencies and Semantic Dependencies (detour)
 - 1. Syntax, abstraction vs. lexicalization
 - 2. Multilingual resources
- 4. Universal Decompositional Semantics (UDS)
 - 1. Goals and overview
 - 2. Protoroles
- 5. Executable parsing (detour)
 - 1. Goals, datasets
- 6. Question break
- 7. Semantic parsing
 - 1. Alignment-based
 - 2. Seq2seq
 - 3. Seq2graph
- 8. Speculative/future work

What is semantics

Roughly: relationship between words and meaning What does a given sentence mean? How to represent meaning

Abstraction

King and the mapmaker

Abstraction

Level of abstraction depends on goals Want to capture important regularities in language

Quick logic review

Predicates

For a domain D $p: D \rightarrow \{T, F\}$ p(x) = T iff p is true of x

Connectives

$$\begin{array}{l} \wedge : \\ T \wedge T = T \\ T \wedge F = F \\ F \wedge T = F \\ F \wedge F = F \end{array}$$

Quick logic review

Quantifiers

 $\exists x = \text{There is some } x \text{ in the domain } D \dots$ $\forall x = \text{For every } x \text{ in the domain } D \dots$

 $\exists x.p(x) =$ There exists some x in the domain D for which p is true.

One proposal: represent the semantics of language with logic Seems reasonable...

"I walked the dog and fed him" = walked(I, dog) \land fed(I, dog)

Not so fast!

How do we know who "I" and "dog" are? Fine if we have 1 dog But what if we have 2?

walked(I, dog) \wedge fed(I, dog) walked(I, dog) \wedge fed(I, dog)

We need an abstraction with variables

 $\exists x, y. \operatorname{me}(x) \land \operatorname{dog}(y) \land \operatorname{walked}(x, y) \land \operatorname{fed}(x, y)$

 $\exists x, y, z. \operatorname{me}(x) \land \operatorname{dog}(y) \land \operatorname{dog}(z) \land y! = z \land \operatorname{walked}(x, y) \land \operatorname{fed}(x, z)$

One more problem...

"The boy hit the ball" $\exists x, y. boy(x) \land ball(y) \land hit(x, y)$ "The boy hit the ball with a bat" $\exists x, y, z. boy(x) \land ball(y)$ $\land bat(z) \land hit(x, y, z)$

"The boy hit the ball with a bat in the park"

 $\exists x, y, z, w. boy(x) \land ball(y)$

 $\wedge \operatorname{bat}(z) \wedge \operatorname{park}(w) \wedge \operatorname{hit}(x, y, z, w)$

"The boy hit the ball in the park" $\exists x, y, w.boy(x) \land ball(y)$ $\land park(w) \land hit(x, y, w)$

Thematic roles

"The boy hit the ball" [Agent] [Patient] "The boy hit the ball with a bat" [Agent] [Patient] [Instrument] "The boy hit the ball with a bat in the park" [Agent] [Patient] [Inst.] [Loc.] "The boy hit the ball in the park" [Agent] [Patient] [Loc.]

Role	Description
Agent	Person/thing doing an action
Patient	Person/thing action is being done to
Instrument	Thing being used for performing action
Location	Where the action is being performed

Neo-Davidsonian Event Semantics

"The boy hit the ball" $\exists x \exists x y, y boy(x) \land ball(y) \land bit(e), y)$ $AGENT(e, x) \land PATIENT(e, y)$

"The boy hit the ball with a bat" $\exists x, y, z.e.boy(x) \land ball(y) \land bat(z) \land hit(e) \land$ $AGENT(e, x) \land PATIENT(e, y) \land INST.(e, z)$

"The boy hit the ball in the park" $\exists x, y, z.e.boy(x) \land ball(y) \land park(z) \land hit(e) \land$ $AGENT(e, x) \land PATIENT(e, y) \land LOC.(e, z)$

Other representations

Logic still has many shortcomings Especially at scale

One problem: wordsense

"The boy hit the ball with a **bat**" "The **bat** flew into the cave"

bat¹ | bæt |

noun

an implement with a handle and a solid surface, usually of wood, used for hitting the ball in games such as baseball, cricket, and table tennis.

- a person batting, especially in cricket: the team's opening bat.
- each of a pair of objects resembling table tennis bats, used by a person on the ground to guide a taxiing aircraft.

<u>bat</u>²∣bæt∣

noun

1 a mainly nocturnal mammal capable of sustained flight, with membranous wings that extend between the fingers and connecting the forelimbs to the body and the hindlimbs to the tail.

Order Chiroptera: many families and numerous species. The large tropical fruit bats (suborder Megachiroptera) generally have good eyesight and feed mainly on fruit; the numerous smaller bats (suborder Microchiroptera) are mouse-like in appearance, mainly insectivorous, and use ultrasonic echolocation.

Goals:

Large-scale Real language Abstracted from input and syntax Easy-to-process data structure

The boy swung the bat

The bat flew into the cave

ARG0 ~= AGENT ARG1 ~= PATIENT [Banarescu et al., 2013]

The boy walked the dog and fed him

AMR Datasets

English

AMRv1, v2, v3 (LDC Corpora): ~60k sentences Little Prince: 1,562 sentences (1 book) BioAMR (PubMed) 6,952 sentences (3 papers)

Chinese

Little Prince: 1,562 sentences CTBWEB: 5,015 sentences

Spanish

Little Prince: 50 sentences

Silver data

German, Spanish, Italian, Chinese AMR is in English!

Why AMR? (for multilingual semantics)

- Abstraction from syntax/lexicon
- **Event-centric representation**

Data

The Little Prince (505 languages) 2nd only to the bible

Why not AMR? (general concerns)

The boy swung the bat

Agent, Patient

+ > 20 more roles

- = very complicated guidelines
- = hard to annotate (most data from LDC)
- Also = brittle, hard to model

sparse data

nuanced/arbitrary decision boundaries

Universal Dependencies Detour

Universal Dependencies: Syntactic parsing

UD (Syntax)

Over 100 languages

Lexicalized

Every token in input = 1 node in dependency parse tree As a result: different per language

Universal Semantic Dependencies

Why is this a problem?

- **Abstraction!**
- **Modeling meaning**

Meaning should be invariant to translation (?)

Universal Decompositional Semantics

Build an abstract graph from UD

Tied to syntax, but not as closely as SDP

Remove complicated ontologies

Collect graded judgements

[White et al., 2016, 2020]

Universal Decompositional Semantics

Universal Decompositional Semantics

The	cat	caught	the	mouse	and	ate	it

Ē

Q: was the mouse aware of the event "ate"?

Protoroles

[Dowty, 1991] Forget AGENT, PATIENT, THEME, INSTRUMENT Forget ARG0, ARG1

Too many counter-examples

Instead, use a more expressive feature set

Annotated data from [Reisinger et al. 2015]

Data on a scale

"**An assassin** in Colombia **killed** a federal judge on a Medellin street."

- Q: Was the assassin aware of the event?
- Q: Did the assassin exist after the event?
- Q: Did the assassin instigate the event?
- Q: Was the assassin sentient during the event?
- Q: Did the assassin act on purpose?

Protoroles

"She was untrained and, in one botched job, killed a client"

- Q: Was she aware of the event?
- Q: Did she exist after the event?
- Q: Did she instigate the event?
- Q: Was she sentient during the event?
- Q: Did she act on purpose?

UDS Data

[White et al. 2020] Variety of text ~15k sentences English-only

Final MR detour: Executable parsing

Broadly: text-to-code

Goal is to execute program

Common outputs/tasks

SQL

Ordering food

Scheduling

Flights

Executable parsing

SMCalFlow Dataset

Calendaring domain Lisp-like programs Modeling underlying DAG [Andreas et al. 2020] Do I have anything going on tonight?

Execution graph

Question Break

Semantic parsing

Goal: learn to translate language →meaning representation Approaches:

Alignment-based Seq2seq Seq2graph

Alignment-based parsing

Older

Core idea:

Strong models for syntactic parsing

BUT syntactic parsing requires 1-1 node-token correspondence

Maybe we can align graph to input [Flanigan et al. 2014]

Alignment-based parsing

0 2 3 1 4 the The boy bat swung [Null] [boy-01] [swing-01] [null] [bat-01] [ARG0-2] [ROOT] [ARG1-2] [null] [Null]

Pros

Strong inductive bias Works with less data

Cons

Requires aligner Aligner may be harder implement multilingually

Instead of labelling node-by-node...

Encoder-decoder model

[Dong and Lapata, 2016]

What's the target? Linearize graph (swing-01 (:arg0 (boy-01) (:arg1 (bat-01))

Pros:

Seq2seq models work very well for other tasks, well-engineered Flexible: target doesn't need to be English No aligner needed, just one model

Cons:

Need to learn to formulate valid graphs How to deal with re-entrancy?

Seq2graph

Seq2seq, except

Decode into a graph instead of sequence

Yield Recipient Recipient FindManager James(1) ... Update attendees? & \bigcirc 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Decoder **♦** ROOT Yield Update attend. Recip... Recip.. ROOT Yiėld Update attend. attend. Encoder Embedder (BERT, GloVe, CharCNN) Make meeting with James and his manager

[Zhang et al. 2019a] [Zhang et al. 2019b] [Stengel-Eskin et al. 2021]

Seq2graph

Pros:

Can handle re-entrant nodes Stronger inductive bias than seq2seq Easy to build in constraints Cons:

> More engineering effort Harder to use pre-trained seq2seq models

Speculative/ Future work

Important Questions

What do the semantics of different languages look like?
English-heavy, especially semantics
Are current representations adequate for other languages?
Can we use the same types of models?
What divergences/differences exist between languages?
What can that tell us about semantics?
How can we use that to improve models?

Multi-view semantics

Languages differ in what they make explicit, what they leave unsaid Example: Case

English:

Word-order encodes semantic roles

Latin:

Case-based

Free word order

Encodes roles in morphology

Multi-view semantics

Brutus killed Caesar with a sword [Agent] [Patient] [Instrument] *With a sword killed Brutus Caesar *Killed Caesar Brutus with a sword *Caesar killed Brutus with a sword

[Agent] and [Patient] encoded by position [Instrument] encoded by position + "with a" Brutus gladio Caesarem occiditBrut-NOM sword-ABL Caes.-ACC kill-PASTCaesarem gladio Brutus occidit Brutus Caesarem gladio occidit Occidit Caesarem Brutus gladio

[Agent] and [Patient] encoded by morphology
Brutus is the subject/agent
Caesarem is the object/patient
[Instrument] is encoded by morphology
gladio is the instrument (gladius would be subject)

Multi-view semantics

Discuss:

Can you think of other examples? What can you do if you have access to multiple inputs in different languages?

References

- [Banarescu et al. 2013] *Abstract meaning representation for sembanking,* Proceedings of the 7th linguistic annotation workshop and interoperability with discourse (2013)
- [Oepen et al. 2014] SemEval 2014 Task 8: Broad-Coverage Semantic Dependency Parsing, SemEval 2014 (2014)
- [White et al. 2016] Universal decompositional semantics on universal dependencies. EMNLP (2016)
- [White et al. 2020] The Universal Decompositional Semantics Dataset and Decomp Toolkit. LREC (2020)
- [Dowty, 1991] Thematic Proto-Roles and Argument Selection, Language (1991)
- [Reisinger et al. 2015], Semantic Proto-Roles, TACL (2015)
- [Flanigan et al. 2014], A Discriminative Graph-Based Parser for the Abstract Meaning Representation, ACL (2014)
- [Dong and Lapata, 2016], Language to Logical Form with Neural Attention, ACL (2016)
- [Zhang et al. 2019a], AMR parsing as sequence-to-graph transduction, ACL (2019)
- [Zhang et al. 2019b], Broad-coverage Semantic Parsing as Transduction, EMNLP (2019)
- [Stengel-Eskin et al. 2021], Joint Universal Syntactic and Semantic Parsing, TACL (2021)

https://github.com/nschneid/amr-tutorial

https://www.amazon.com/Petit-Prince-French-Antoine-Saint-Exupéry/dp/0152164154

https://universaldependencies.org

https://d2l.ai/chapter_recurrent-modern/seq2seq.html