Beyond Parallel Corpora

Philipp Koehn

26 October 2023
data and machine learning
Supervised and Unsupervised

- We framed machine translation as a supervised machine learning task
 - training examples with labels
 - here: input sentences with translation
 - structured prediction: output has to be constructed in several steps

- Unsupervised learning
 - training examples without labels
 - here: just sentences in the input language
 - we will also look at using just sentences output language

- Semi-supervised learning
 - some labeled training data
 - some unlabeled training data (usually more)

- Self-training
 - make predictions on unlabeled training data
 - use predicted labeled as supervised translation data
Transfer Learning

• Learning from data similar to our task

• Other language pairs
 – first, train a model on different language pair
 – then, train on the targeted language pair
 – or: train jointly on both

• Multi-Task training
 – train on a related task first
 – e.g., part-of-speech tagging

• Share some or all of the components
using monolingual data
Using Monolingual Data

- Language model
 - trained on large amounts of target language data
 - better fluency of output

- Key to success of statistical machine translation

- Neural machine translation
 - integrate neural language model into model
 - create artificial data with backtranslation
Adding a Language Model

• Train a separate language model

• Add as conditioning context to the decoder

• Recall state progression in the decoder
 – decoder state s_i
 – embedding of previous output word $E y_{i-1}$
 – input context c_i

 $$ s_i = f(s_{i-1}, E y_{i-1}, c_i) $$

• Add hidden state of neural language model s_i^{LM}

 $$ s_i = f(s_{i-1}, E y_{i-1}, c_i, s_i^{LM}) $$

• Pre-train language model

• Leave its parameters fixed during translation model training
Refinements

- Balance impact of language model vs. translation model:
 \[\text{gate}_{LM}^i = f(s_{LM}^i) \]

- Learn a scaling factor (gate):
 \[\bar{s}_{LM}^i = \text{gate}_{LM}^i \times s_{LM}^i \]

- Use it to scale values of language model state:
 \[s_i = f(s_{i-1}, \bar{E}y_{i-1}, c_i, \bar{s}_{LM}^i) \]
Back Translation

- Monolingual data is parallel data that misses its other half
- Let’s synthesize that half
Back Translation

• Steps

 1. train a system in reverse language translation
 2. use this system to translate target side monolingual data → synthetic parallel corpus
 3. combine generated synthetic parallel data with real parallel data to build the final system

• Roughly equal amounts of synthetic and real data

• Useful method for domain adaptation
Iterative Back Translation

- Quality of backtranslation system matters
- Build a better backtranslation system ... with backtranslation
Iterative Back Translation

• Example

<table>
<thead>
<tr>
<th>German–English</th>
<th>Back</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>no back-translation</td>
<td>-</td>
<td>29.6</td>
</tr>
<tr>
<td>*10k iterations</td>
<td>10.6</td>
<td>29.6 (+0.0)</td>
</tr>
<tr>
<td>*100k iterations</td>
<td>21.0</td>
<td>31.1 (+1.5)</td>
</tr>
<tr>
<td>convergence</td>
<td>23.7</td>
<td>32.5 (+2.9)</td>
</tr>
<tr>
<td>re-back-translation</td>
<td>27.9</td>
<td>33.6 (+4.0)</td>
</tr>
</tbody>
</table>

* = limited training of back-translation system
Variants

- Copy Target
 - if no good neural machine translation system to start with
 - just copy target language text to the source

- Forward Translation
 - synthesize training data in same direction as training
 - self-training (inferior but sometimes successful)
Round Trip Training

• We could iterate through steps of
 – train system
 – create synthetic corpus

• Dual learning: train models in both directions together
 – translation models $F \rightarrow E$ and $E \rightarrow F$
 – take sentence f
 – translate into sentence e'
 – translate that back into sentence f'
 – training objective: f should match f'

• Setup could be fooled by just copying ($e' = f$)
 \Rightarrow score e' with a language for language E
 add language model score as cost to training objective
Round Trip Training

- MT F → E
- MT E → F
- LM F
- e
- LM E
- f
Monolingual Pre-Training

- Initial training of neural machine translation model on monolingual data
- Replace some input word sequences with <pad> (30% of words)
- Train model MASKED → TEXT on both source and target text
- Reorder sentences (each training example has 3 sentences)

<en> Advanced NLP techniques master class ” how <pad> ” </s>
3rd <pad> : 18 </s>
Results <pad> 40 of 729

↓
3rd grade : 18 </s>
Advanced NLP techniques master class ” how to with clients ” </s>
Results 1 – 40 of 729
unsupervised machine translation
Monolingual Embedding Spaces

- Embedding spaces for different languages have similar shape
- Intuition: relationship between *dog*, *cat*, and *lion*, independent of language
- How can we rotate the triangle to match up?
Matching Embedding Spaces

• Seed lexicon of identically spelled words, numbers, names

• Adversarial training: discriminator predicts language [Conneau et al., 2018]

• Match matrices with word similarity scores: Vecmap [Artetxe et al., 2018]
Inferred Translation Model

- Translation model
 - induced word translations (nearest neighbors of mapped embeddings)
 -> statistical phrase translation table (probability \(\simeq\) similarity)

- Language model
 - target side monolingual data
 -> estimate statistical n-gram language model

\[\Rightarrow\] Statistical phrase-based machine translation system
Synthetic Training Data

- Create synthetic parallel corpus
 - monolingual text in source language
 - translate with inferred system: translations in target language

- Recall: EM algorithm
 - predict data: generate translation for monolingual corpus
 - predict model: estimate model from synthetic data
 - iterate this process, alternate between language directions

- Increasingly use neural machine translation model to synthesize data
multiple language pairs
Multiple Language Pairs

- There are more than two languages in the world
- We may want to build systems for many language pairs
- Typical: train separate models for each
- Joint training
Multiple Input Languages

- Example
 - German–English
 - French–English

- Concatenate training data

- Joint model benefits from exposure to more English data

- Shown beneficial in low resource conditions

- Do input languages have to be related? (maybe not)
Multiple Output Languages

- Example
 - French–English
 - French–Spanish

- Concatenate training data

- Given a French input sentence, how specify output language?

- Indicate output language with special tag

[ENGLISH] N’y a-t-il pas ici deux poids, deux mesures?
⇒ Is this not a case of double standards?

[SPANISH] N’y a-t-il pas ici deux poids, deux mesures?
⇒ ¿No puede verse con toda claridad que estamos utilizando un doble rasero?
Zero Shot Translation

- Example
 - German–English
 - French–English
 - French–Spanish

- We want to translate
 - German–Spanish
Zero Shot

• Train on
 – German–English
 – French–English
 – French–Spanish

• Specify translation

[SPANISH] Messen wir hier nicht mit zweierlei Maß?
 ⇒ ¿No puede verse con toda claridad que estamos utilizando un doble rasero?
Google's AI just created its own universal 'language'

The technology used in Google Translate can identify hidden material between languages to create what's known as interlingua

By MATT BURGESS
23 Nov 2016
Zero Shot: Reality

Table 5: Portuguese→Spanish BLEU scores using various models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Zero-shot</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) PBMT bridged</td>
<td>no</td>
<td>28.99</td>
</tr>
<tr>
<td>(b) NMT bridged</td>
<td>no</td>
<td>30.91</td>
</tr>
<tr>
<td>(c) NMT Pt→Es</td>
<td>no</td>
<td>31.50</td>
</tr>
<tr>
<td>(d) Model 1 (Pt→En, En→Es)</td>
<td>yes</td>
<td>21.62</td>
</tr>
<tr>
<td>(e) Model 2 (En↔{Es, Pt})</td>
<td>yes</td>
<td>24.75</td>
</tr>
<tr>
<td>(f) Model 2 + incremental training</td>
<td>no</td>
<td>31.77</td>
</tr>
</tbody>
</table>

- Bridged: pivot translation Portuguese → English → Spanish
- Model 1 and 2: Zero shot training
- Model 2 + incremental training: use of some training data in language pair
Massively Multilingual Training

• Scaling up multilingual machine translation for more languages
 – many-to-English
 – English-to-many
 – many-to-many

• Mainly motivated by improving low-resource language pairs

• Move towards larger models
Translation Quality for 103 Languages

Data distribution over language pairs

Translation quality of 103 bilingual baselines

High Resource Languages Low Resource Languages

(source: Google)
Gains with Multilingual Training

(source: Google)
Romanization

Maximize shared orthography

Maximize shared vocabulary

(source: USC/ISI)
Introducing the First AI Model That Translates 100 Languages Without Relying on English

October 19, 2020
By Angela Fan, Research Assistant

- 7.5 billion sentences for 100 languages (mined from web-crawled data)
- Model with 15 billion parameters
- Improvements especially for low resource languages
Even Bigger: NLLB (2022)

- No Language Left Behind: 200 languages
- Hand-translated test set: Flores-200
- Uses diverse data sources
 - public parallel data
 - translations created by professional translators
 - sentence pairs based on sentence embedding similarity
 - monolingual data for
 - monolingual pre-training
 - back-translation
 - self-training
- Models of different scale (up to 54B parameters), publicly released
Different Amounts of Data per Language

• High-resource language pairs are undertrained

• Low-resource language pairs are overtrained

⇒ Oversampling low resource language pairs
 Data selection probability \(p_l \) for language pair \(l \) based on corpus sizes \(D_k \)

\[
p_l = \left(\frac{D_l}{\sum_k D_k} \right)^{1/T}
\]

• Curriculum training: adding low-resource data only in later training stages
Mixture of Experts

- Conditional compute
- Gating mechanism decides which FF step to utilize
- Allows scaling to many more parameters without increasing computational cost