Basics in Language and Probability

Philipp Koehn

3 September 2020
It must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.
Noam Chomsky, 1969

Whenever I fire a linguist our system performance improves.
Frederick Jelinek, 1988
Conflicts?

rationalist vs. empiricist

scientist vs. engineer

insight vs. data analysis

explaining language vs. building applications
language
A Naive View of Language

• Language needs to name
 – nouns: objects in the world (dog)
 – verbs: actions (jump)
 – adjectives and adverbs: properties of objects and actions (brown, quickly)

• Relationship between these have to specified
 – word order
 – morphology
 – function words
A Bag of Words

quick
fox
brown
lazy
jump
dog
Relationships

- quick
- fox
- brown
- lazy
- jump
- dog
Marking of Relationships: Word Order

quick brown fox jump lazy dog
Marking of Relationships: Function Words

quick brown fox jump over lazy dog
quick brown fox jumps over lazy dog
Some Nuance

the quick brown fox jumps over the lazy dog
Marking of Relationships: Agreement

• From Catullus, First Book, first verse (Latin):

Cui dono lepidum novum libellum arida modo pumice expolitum?
Whom I-present lovely new little-book dry manner pumice polished?

(To whom do I present this lovely new little book now polished with a dry pumice?)

• Gender (and case) agreement links adjectives to nouns
Marking of Relationships to Verb: Case

- German:

Die Frau gibt dem Mann den Apfel
The woman gives the man the apple
subject indirect object object

Der Frau gibt der Mann den Apfel
The woman gives the man the apple
indirect object subject object

- Case inflection indicates role of noun phrases
Case Morphology vs. Prepositions

• Two different word orderings for English:
 – The woman gives the man the apple
 – The woman gives the apple to the man

• Japanese:

 女性は 男性に アップルの を与えます
 woman SUBJ man OBJ apple OBJ2 gives

• Is there a real difference between prepositions and noun phrase case inflection?
This is a simple sentence
This is a simple sentence
Parts of Speech

This is a simple sentence

be
3sg present

PART OF SPEECH
WORDS
MORPHOLOGY
Syntax

This is a simple sentence

S
 NP
 DT VBZ DT JJ NN
 VP
 NP
 be
 3sg
 present
This is a simple sentence

be 3sg present SIMPLE1 having few parts SENTENCE1 string of words satisfying the grammatical rules of a language

Semantics
Discourse

This is a simple sentence

But it is an instructive one.

CONTRAST

SYNTAX

PART OF SPEECH

WORDS

MORPHOLOGY

SEMANTICS

DISCOURSE
Why is Language Hard?

- Ambiguities on many levels
- Rules, but many exceptions
- No clear understand how humans process language
- Can we learn everything about language by automatic data analysis?
data
Data: Words

- Definition: strings of letters separated by spaces

- But how about:
 - punctuation: commas, periods, etc. typically separated (tokenization)
 - hyphens: high-risk
 - clitics: Joe’s
 - compounds: website, Computerlinguistikvorlesung

- And what if there are no spaces:
 伦敦每日快报指出,两台记载黛安娜王妃一九九七年巴黎死亡车祸调查资料的手提电脑,被从前大都会警察总长的办公室里偷走.
Word Counts

Most frequent words in the English Europarl corpus

<table>
<thead>
<tr>
<th>any word</th>
<th>Frequency in text</th>
<th>Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>1,929,379</td>
<td></td>
</tr>
<tr>
<td>,</td>
<td>1,297,736</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>956,902</td>
<td></td>
</tr>
<tr>
<td>of</td>
<td>901,174</td>
<td></td>
</tr>
<tr>
<td>to</td>
<td>841,661</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>684,869</td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>582,592</td>
<td></td>
</tr>
<tr>
<td>that</td>
<td>452,491</td>
<td></td>
</tr>
<tr>
<td>is</td>
<td>424,895</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>424,552</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nouns</th>
<th>Frequency in text</th>
<th>Content word</th>
</tr>
</thead>
<tbody>
<tr>
<td>the European</td>
<td>129,851</td>
<td></td>
</tr>
<tr>
<td>, Mr</td>
<td>110,072</td>
<td></td>
</tr>
<tr>
<td>. commission</td>
<td>98,073</td>
<td></td>
</tr>
<tr>
<td>of president</td>
<td>71,111</td>
<td></td>
</tr>
<tr>
<td>to parliament</td>
<td>67,518</td>
<td></td>
</tr>
<tr>
<td>and union</td>
<td>64,620</td>
<td></td>
</tr>
<tr>
<td>in report</td>
<td>58,506</td>
<td></td>
</tr>
<tr>
<td>that council</td>
<td>57,490</td>
<td></td>
</tr>
<tr>
<td>is states</td>
<td>54,079</td>
<td></td>
</tr>
<tr>
<td>a member</td>
<td>49,965</td>
<td></td>
</tr>
</tbody>
</table>
Word Counts

But also:

There is a large tail of words that occur only once.
33,447 words occur once, for instance

- cornflakes
- mathematicians
- Tazhikhistan
Zipf’s law

$$f \times r = k$$

- f = frequency of a word
- r = rank of a word (if sorted by frequency)
- k = a constant
Zipf’s law as a graph

Why a line in log-scale?

\[fr = k \Rightarrow f = \frac{k}{r} \Rightarrow \log f = \log k - \log r \]
statistics
Probabilities

• Given word counts we can estimate a probability distribution:

\[P(w) = \frac{\text{count}(w)}{\sum_{w'} \text{count}(w')} \]

• This type of estimation is called *maximum likelihood estimation*. Why? We will get to that later.

• Estimating probabilities based on frequencies is called the *frequentist approach* to probability.

• This probability distribution answers the question: If we randomly pick a word out of a text, how likely will it be word \(w \)?
• We introduce a random variable W.

• We define a probability distribution p, that tells us how likely the variable W is the word w:

$$prob(W = w) = p(w)$$
Joint Probabilities

• Sometimes, we want to deal with two random variables at the same time.

• Example: Words w_1 and w_2 that occur in sequence (a **bigram**)
 We model this with the distribution: $p(w_1, w_2)$

• If the occurrence of words in bigrams is **independent**, we can reduce this to
 $p(w_1, w_2) = p(w_1)p(w_2)$. Intuitively, this not the case for word bigrams.

• We can estimate **joint probabilities** over two variables the same way we
 estimated the probability distribution over a single variable:

$$p(w_1, w_2) = \frac{\text{count}(w_1, w_2)}{\sum_{w_1', w_2'} \text{count}(w_1', w_2')}$$
• Another useful concept is **conditional probability**

\[p(w_2|w_1) \]

It answers the question: If the random variable \(W_1 = w_1 \), how what is the value for the second random variable \(W_2 \)?

• Mathematically, we can define conditional probability as

\[p(w_2|w_1) = \frac{p(w_1, w_2)}{p(w_1)} \]

• If \(W_1 \) and \(W_2 \) are independent: \(p(w_2|w_1) = p(w_2) \)
Chain Rule

• A bit of math gives us the chain rule:

\[p(w_2 | w_1) = \frac{p(w_1, w_2)}{p(w_1)} \]
\[p(w_1) p(w_2 | w_1) = p(w_1, w_2) \]

• What if we want to break down large joint probabilities like \(p(w_1, w_2, w_3) \)?

We can repeatedly apply the chain rule:

\[p(w_1, w_2, w_3) = p(w_1) p(w_2 | w_1) p(w_3 | w_1, w_2) \]
• Finally, another important rule: **Bayes rule**

\[p(x|y) = \frac{p(y|x) \ p(x)}{p(y)} \]

• It can easily derived from the chain rule:

\[p(x, y) = p(x, y) \]

\[p(x|y) \ p(y) = p(y|x) \ p(x) \]

\[p(x|y) = \frac{p(y|x) \ p(x)}{p(y)} \]
• We introduced the concept of a random variable X

\[\text{prob}(X = x) = p(x) \]

• Example: Roll of a dice. There is a $\frac{1}{6}$ chance that it will be 1, 2, 3, 4, 5, or 6.

• We define the **expectation** $E(X)$ of a random variable as:

\[E(X) = \sum_x p(x) \cdot x \]

• Roll of a dice:

\[E(X) = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \frac{1}{6} \times 3 + \frac{1}{6} \times 4 + \frac{1}{6} \times 5 + \frac{1}{6} \times 6 = 3.5 \]
Variance

- **Variance** is defined as

\[
Var(X) = E((X - E(X))^2) = E(X^2) - E^2(X)
\]

\[
Var(X) = \sum_x p(x) (x - E(X))^2
\]

- Intuitively, this is a measure how far events diverge from the mean (expectation)

- Related to this is **standard deviation**, denoted as \(\sigma\).

\[
Var(X) = \sigma^2
\]

\[
E(X) = \mu
\]
Variance

- Roll of a dice:

\[
\text{Var}(X) = \frac{1}{6} (1 - 3.5)^2 + \frac{1}{6} (2 - 3.5)^2 + \frac{1}{6} (3 - 3.5)^2 \\
+ \frac{1}{6} (4 - 3.5)^2 + \frac{1}{6} (5 - 3.5)^2 + \frac{1}{6} (6 - 3.5)^2 \\
= \frac{1}{6} ((-2.5)^2 + (-1.5)^2 + (-0.5)^2 + 0.5^2 + 1.5^2 + 2.5^2) \\
= \frac{1}{6} (6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25) \\
= 2.917
\]
Standard Distributions

- **Uniform**: all events equally likely
 - $\forall x, y : p(x) = p(y)$
 - example: roll of one dice

- **Binomial**: a serious of trials with only only two outcomes
 - probability p for each trial, occurrence r out of n times:
 $b(r; n, p) = \binom{n}{r} p^r (1 - p)^{n-r}$
 - a number of coin tosses
Standard Distributions

- **Normal**: common distribution for continuous values
 - value in the range $[-\infty, x]$, given expectation μ and standard deviation σ:
 \[n(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
 - also called **Bell curve**, or **Gaussian**
 - examples: heights of people, IQ of people, tree heights, ...
Estimation Revisited

- We introduced previously an estimation of probabilities based on frequencies:

\[P(w) = \frac{\text{count}(w)}{\sum_{w'} \text{count}(w')} \]

- Alternative view: Bayesian: what is the most likely model given the data

\[p(M|D) \]

- Model and data are viewed as random variables
 - model \(M \) as random variable
 - data \(D \) as random variable
Bayesian Estimation

• Reformulation of $p(M|D)$ using Bayes rule:

$$p(M|D) = \frac{p(D|M) p(M)}{p(D)}$$

$$\argmax_M p(M|D) = \argmax_M p(D|M) \; p(M)$$

• $p(M|D)$ answers the question: What is the most likely model given the data

• $p(M)$ is a prior that prefers certain models (e.g. simple models)

• The frequentist estimation of word probabilities $p(w)$ is the same as Bayesian estimation with a uniform prior (no bias towards a specific model), hence it is also called the maximum likelihood estimation
An important concept is **entropy**:

\[H(X) = \sum_x -p(x) \log_2 p(x) \]

A measure for the degree of disorder
Entropy Example

One event

\[p(a) = 1 \]

\[H(X) = -1 \log_2 1 \]

\[= 0 \]
Entropy Example

2 equally likely events:

\[p(a) = 0.5 \]
\[p(b) = 0.5 \]

\[H(X) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 \]
\[= -\log_2 0.5 \]
\[= 1 \]
Entropy Example

4 equally likely events:

\[p(a) = 0.25 \]

\[p(b) = 0.25 \]

\[p(c) = 0.25 \]

\[p(d) = 0.25 \]

\[H(X) = -0.25 \log_2 0.25 - 0.25 \log_2 0.25 \]

\[-0.25 \log_2 0.25 - 0.25 \log_2 0.25 \]

\[= - \log_2 0.25 \]

\[= 2 \]
Entropy Example

4 events, one more likely than the others:

\[
p(a) = 0.7 \\
p(b) = 0.1 \\
p(c) = 0.1 \\
p(d) = 0.1
\]

\[
H(X) = -0.7 \log_2 0.7 - 0.1 \log_2 0.1 \\
- 0.1 \log_2 0.1 - 0.1 \log_2 0.1 \\
= -0.7 \log_2 0.7 - 0.3 \log_2 0.1 \\
= -0.7 \times -0.5146 - 0.3 \times -3.3219 \\
= 0.36020 + 0.99658 \\
= 1.35678
\]
Entropy Example

4 events, one much more likely than the others:

\[p(a) = 0.97 \]
\[p(b) = 0.01 \]
\[p(c) = 0.01 \]
\[p(d) = 0.01 \]

\[H(X) = -0.97 \log_2 0.97 - 0.01 \log_2 0.01 \]
\[-0.01 \log_2 0.01 - 0.01 \log_2 0.01 \]
\[= -0.97 \log_2 0.97 - 0.03 \log_2 0.01 \]
\[= -0.97 \times -0.04394 - 0.03 \times -6.6439 \]
\[= 0.04262 + 0.19932 \]
\[= 0.24194 \]
Examples

\begin{align*}
H(X) &= 0 \\
H(X) &= 1 \\
H(X) &= 2 \\
H(X) &= 3 \\
H(X) &= 1.35678 \\
H(X) &= 0.24194
\end{align*}
Intuition Behind Entropy

- A good model has low entropy
 \[\rightarrow \text{it is more certain about outcomes} \]

- For instance a translation table

\[
\begin{array}{|c|c|c|}
\hline
e & f & p(e|f) \\
\hline
\text{the} & \text{der} & 0.8 \\
\text{that} & \text{der} & 0.2 \\
\hline
\end{array}
\]

is better than

\[
\begin{array}{|c|c|c|}
\hline
e & f & p(e|f) \\
\hline
\text{the} & \text{der} & 0.02 \\
\text{that} & \text{der} & 0.01 \\
\ldots & \ldots & \ldots \\
\hline
\end{array}
\]

- A lot of statistical estimation is about reducing entropy
• Assume that we want to encode a sequence of events X

• Each event is encoded by a sequence of bits

• For example
 – Coin flip: heads = 0, tails = 1
 – 4 equally likely events: $a = 00$, $b = 01$, $c = 10$, $d = 11$
 – 3 events, one more likely than others: $a = 0$, $b = 10$, $c = 11$
 – Morse code: e has shorter code than q

• Average number of bits needed to encode $X \geq$ entropy of X
The Entropy of English

- We already talked about the probability of a word $p(w)$

- But words come in sequence. Given a number of words in a text, can we guess the next word $p(w_n|w_1, \ldots, w_{n-1})$?

- Assuming a model with a limited window size

<table>
<thead>
<tr>
<th>Model</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0th order</td>
<td>4.76</td>
</tr>
<tr>
<td>1st order</td>
<td>4.03</td>
</tr>
<tr>
<td>2nd order</td>
<td>2.8</td>
</tr>
<tr>
<td>human, unlimited</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Next Lecture: Language Models

- Next time, we will expand on the idea of a model of English in the form

\[p(w_n|w_1, \ldots, w_{n-1}) \]

- Despite its simplicity, a tremendously useful tool for NLP

- Nice machine learning challenge
 - sparse data
 - smoothing
 - back-off and interpolation