Morphology

Philipp Koehn

2 November 2017

A Naive View of Language

- Language needs to name
 - nouns: objects in the world (dog)
 - verbs: actions (jump)
 - adjectives and adverbs: properties of objects and actions (brown, quickly)
- Relationship between these have to specified
 - word order
 - morphology
 - function words

Marking of Relationships: Agreement

- From Catullus, First Book, first verse (Latin):
- Gender (and case) agreement links adjectives to nouns

Cui dono lepidum novum libellum arida modo pumice expolitum ? Whom I-present lovely new little-book dry manner pumice polished ?

(To whom do I present this lovely new little book now polished with a dry pumice?)

Marking of Relationships to Verb: Case

• German:

Die Frau The woman subject gibt gives

dem Mann the man indirect object den Apfel the apple object

Case inflection indicates role of noun phrases

Case Morphology vs. Prepositions

- Two different word orderings for English:
 - The woman gives the man the apple
 - The woman gives the apple **to** the man

• Japanese:

• Is there a real difference between prepositions and noun phrase case inflection?

Writingwordstogether

- Definition of word boundaries purely an artifact of writing system
- Differences between languages
 - Agglutinative compounding
 Informatikseminar vs. computer science seminar
 - Function word vs. affix
- Border cases
 - Joe's one token or two?
 - Morphology of affixes often depends on phonetics / spelling conventions $dog+s \rightarrow dogs \ vs. \ pony \rightarrow ponies$
 - ... but note the English function word a: a donkey vs. an aardvark

Relationship between Noun Phrases

- In English handled with possessive case, prepositions, or word order
- Possessive case somewhat interchangeable with of preposition

the dog's bone vs. the bone of the dog

• Mulitiple modifiers

the instructions by the teacher to the student about the assignment (teacher) student assignment instructions

Changing Part-of-Speech

- Derivational morphology allows changing part of speech of words
- Example:
 - base: nation, noun
 - \rightarrow national, adjective
 - \rightarrow nationally, adverb
 - → nationalist, noun
 - \rightarrow nationalism, noun
 - \rightarrow nationalize, verb
- Sometimes distinctions between POS quite fluid (enabled by morphology)
 - I want to integrate morphology
 - I want the integration of morphology

Meaning Altering Affixes

• English

undo

redo

hypergraph

• German: zer- implies action causes destruction

Er **zer**redet das Thema → He talks the topic **to death**

• Spanish: -ito means object is small

burro → burrito

Adding Subtle Meaning

- Morphology allows adding subtle meaning
 - verb tenses: time action is occurring, if still ongoing, etc.
 - count (singular, plural): how many instances of an object are involved
 - definiteness (the cat vs. a cat): relation to previously mentioned objects
 - grammatical gender: helps with co-reference and other disambiguation

• Sometimes redundant: same information repeated many times

how does morphology impact machine translation?

Unknown Source Words

• Ratio of unknown words in WMT 2013 test set:

Source language	Ratio unknown
Russian	2.0%
Czech	1.5%
German	1.2%
French	0.5%
English (to French)	0.5%

- Caveats:
 - corpus sizes differ
 - not clear which unknown words have known morphological variants

Unknown Target Words

- Same problem, different flavor
- Harder to quantify (unknown words in reference?)
- Enforcing morphological constraints may have unintended consequences
 - correct morphological variant unknown (or too rare)
 - → different lemma is chosen by system

Differently Encoded Information

• Languages with different sentence structure

das	behaupten	sie	wenigstens
this	claim	they	at least
the		she	

- Convert from inflected language into configuration language (and vice versa)
- Ambiguities can be resolved through syntactic analysis
 - the meaning the of das not possible (not a noun phrase)
 - the meaning she of sie not possible (subject-verb agreement)

Non-Local Information

• Pronominal anaphora

I saw the movie and it is good.

- How to translate it into German (or French)?
 - it refers to movie
 - movie translates to Film
 - Film has masculine gender
 - ergo: it must be translated into masculine pronoun er
- We are not handling pronouns very well

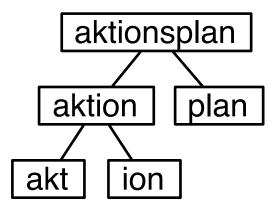
Complex Semantic Inference

• Example

Whenever I visit my uncle and his daughters, I can't decide who is my favorite cousin.

• How to translate cousin into German? Male or female?

compound splitting


Compounds

- Compounding = merging words into new bigger words
- Prevalent in German, Dutch, and Finnish
- Rare in English: homework, website
- ⇒ Compounds in source need to be split up in pre-processing
 - Note related problem: word segmentation in Chinese

Compound Splitting

• Break up complex word into smaller words found in vocabulary

- Frequency-based method: geometric average of word counts
 - aktionsplan (652) \rightarrow 652
 - **–** aktion (960) / plan \rightarrow **825.6**
 - aktions (5) / plan \rightarrow 59.6
 - **–** akt (224) / ion (1) / plan (710) \rightarrow 54.2

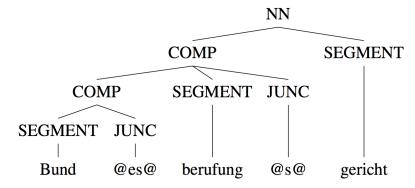
Compound Merging

- When translating into a compounding language, compounds need to be created
- Original sentence (tokenized)

der Polizeibeamte gibt dem Autofahrer einen Alkoholtest.

- Split compounds in preprocessing, build translation model with split data der Polizei Beamte gibt dem Auto Fahrer einen Alkohol Test .
- Detect merge points (somehow....)

der Auto @ \sim @ Fahrer verweigert den Polizei @ \sim @ Alkohol @ \sim @ Test .


• Merge compounds

der Autofahrer verweigert den Polizeialkoholtest.

Detecting Merge Points

- Mark compounding (special token @~@ in the translation model or mark part words with Auto#)
- Classifier approach (Weller et al., 2014)
 - handle compound merging in post-processing
 - train classifier to predict for each word that it should be merged with the next
 - features:
 - * part-of-speech tag
 - * frequency or ratio that it occurs in compound
 - * are aligned source words part of same base noun phrase etc.?
- Part of syntactic annotation in syntax-based models (Williams et al., 2014)

rich morphology in the source

German

• German sentence with morphological analysis

Er	wohnt	in	einem	großen	Haus
Er	wohnen -en+t	in	ein +em	groß +en	Haus + ϵ
He	lives	in	a	big	house

• Four inflected words in German, but English...

also inflected both English verb live and German verb wohnen inflected for tense, person, count

not inflected corresponding English words not inflected (a and big)

 \rightarrow easier to translate if inflection is stripped

less inflected English word house inflected for count

German word Haus inflected for count and case

- → reduce morphology to singular/plural indicator
- Reduce German morphology to match English

Turkish

- Example
 - Turkish: $Sonuçlarına_1$ dayanılara k_2 bir $_3$ ortakliği $_4$ oluşturulacaktır $_5$.
 - English: **a**₃ **partnership**₄ will be **drawn-up**₅ on the **basis**₂ of **conclusions**₁.
- Turkish morphology → English function words (will, be, on, the, of)
- Morphological analysis

Sonuç +lar +sh +na daya +hnhl +yarak bir ortaklık +sh oluş +dhr +hl +yacak +dhr

• Alignment with morphemes

```
sonuç | +lar | +sh | +na | | daya+hnhl | +yarak | bir | ortaklık | +sh | oluş | +dhr | +hl | +yacak | +dhr | conclusion | +s | of | the | basis | on | a | partnership | draw up | +ed | will | be
```

⇒ Split Turkish into morphemes, drop some

Arabic

Basic structure of Arabic morphology

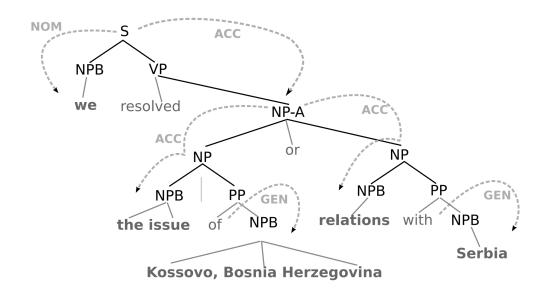
$$[CONJ+[PART+[al+BASE+PRON]]]$$

- Examples for clitics (prefixes or suffixes)
 - definite determiner al+ (English the)
 - pronominal morpheme +hm (English their/them)
 - particle l+ (English to/for)
 - conjunctive pro-clitic w+ (English and)
- Same basic strategies as for German and Turkish
 - morphemes akin to English words → separated out as tokens
 - properties (e.g., tense) also expressed in English \rightarrow keep attached to word
 - morphemes without equivalence in English \rightarrow drop

Arabic Preprocessing Schemes

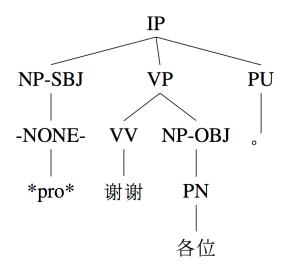
- **ST** Simple tokenization (punctuations, numbers, remove diacritics) wsynhY Alr}ys jwlth bzyArp AlY trkyA.
- **D1** Decliticization: split off conjunction clitics w+ synhy Alr}ys jwlth bzyArp <lY trkyA.
- **D2** Decliticization: split off the class of particles w+ s+ ynhy Alr}ys jwlth b+ zyArp <lY trkyA.
- **D3** Decliticization: split off definite article (Al+) and pronominal clitics w+s+ynhy Al+rys $jwlp +P_{3MS} b+zyArp < lY trkyA$.
- **MR** Morphemes: split off any remaining morphemes $w + s + y + nhy \ Al + r \} ys \ jwl + p + h \ b + zyAr + p < lY \ trkyA \ .$
- **EN** English-like: use lexeme and English-like POS tags, indicates pro-dropped verb subject as a separate token

missing information in the source


Enriching the Source

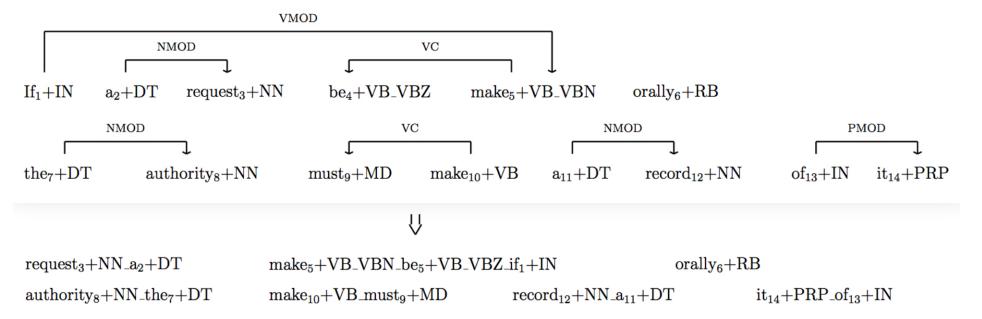
- Translating from morphologically poor to rich language
- Idea: Add annotation to source
 - morphological analysis
 - syntactic parsing (phrase structure and dependencies)
 - semantic analysis
 - prediction models that consider context
- Surprisingly little work in this area

Adding Case Information



- Translating
 - from language with word order marking of noun phrases (e.g., English)
 - to language with morphological case marking (e.g., Greek, German)
- Case information needed when generating target, but it is not local
- Method (Avramidis and Koehn, 2008)
 - parse English source sentence
 - detect "case" of each noun phrase
 - annotate words that map to inflected forms (nouns, adjectives, determiners)

Special Tokens for Empty Categories



(IP (NP-SBJ (-NONE- *pro*)) VP PU)

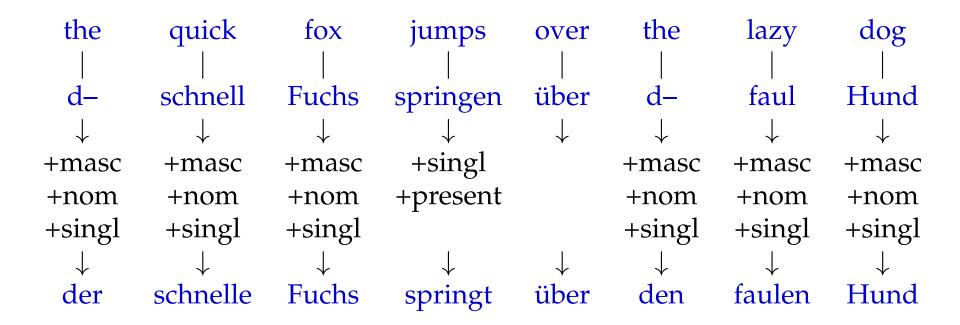
- Linguistic analysis of some languages suggests the existence of empty categories
- Most commonly known: pro-drop, omission of pronouns
- Method (Chung and Gildea, 2010) for Chinese–English
 - detect empty categories with parser and structured maximum entropy model
 - insert special token in source side of parallel corpus

Transforming into Complex Morphology

- English-Turkish: generation of complex morphology
- Method (Yeniterzi and Oflazer, 2010)
 - parse English sentence
 - annotate each word with part-of-speech tag
 - attach function words that will be part of Turkish morphology

generating target side morphology

Problem



• Example: Case inflection in German

- Relevant information is not local to the phrase rule
- Sparse data
 - differentiating between inflected forms splits statistical evidence
 - some cases of correct inflection may be missing
- ⇒ Translation into lemma, inflection as post-processing

Inflection Prediction

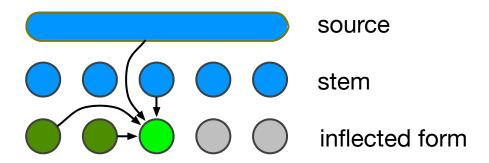
- Inflection as classification task
- Morphological properties typically come from morphological analyzer, but can also be learned unsupervised

Model

• Given

- string of source words
- string of target words
- word alignments
- morphological and syntactic properties of source words

• Predict


morphological properties of target words

• Sequence prediction:

prediction of morphological properties of earlier words affect prediction for subsequent words

Maximum Entropy Markov Models

Predicting one inflected form at a time (Toutanova et al., 2008)

$$p(\text{form}|\text{stem}, \text{src}) = \prod_{t=1}^{n} p(\text{form}_{t}|\text{form}_{t-2}, \text{form}_{t-1}, \text{stem}_{t}, \text{source})$$

• Log-linear model with features

$$p(\text{form}_{t}|\text{form}_{t-2},\text{form}_{t-1},\text{stem}_{t},\text{source})$$

$$= \exp \frac{1}{Z} \sum_{i} \lambda_{i} h_{i}(\text{form}_{t},\text{form}_{t-2},\text{form}_{t-1},\text{stem}_{t},\text{source})$$

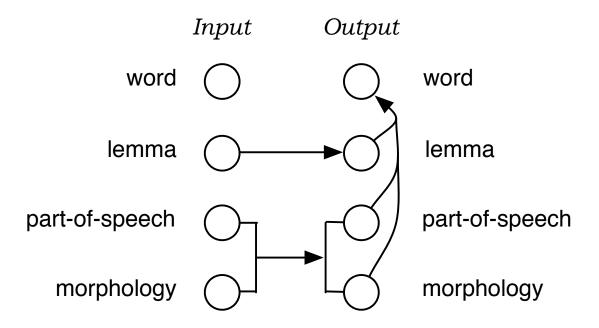
• Could also use conditional random fields (Fraser et al., 2012)

Synthetic Phrase Pairs

- Inflection by post-processing is pipelining (bad!)
 - decisions made by translation model cannot be changed
 - but, say, surface form language model may have important evidence
- \Rightarrow Extend phrase table (Chahuneau et al., 2013)
 - build inflection model to predict target side inflection
 - use model to predict target side inflection in parallel data
 - add predicted variants as additional phrase pairs

factored models

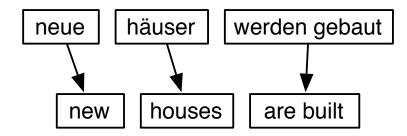
Factored Representation


• Factored representation of words

	Input	Output	
word	\bigcirc		word
lemma			lemma
part-of-speech	\bigcirc	- ()	part-of-speech
morphology			morphology
word class	\bigcirc	\bigcirc	word class

- Goals
 - Generalization, e.g. by translating lemmas, not surface forms
 - Richer model, e.g. using syntax for reordering, language modeling)

Morphological Analysis and Generation


• Three steps

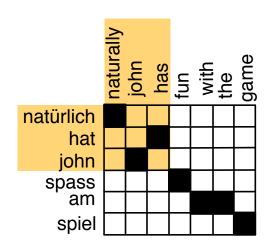
- translation of lemmas
- translation of part-of-speech and morphological information
- generation of surface forms

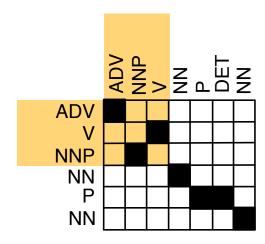
Decomposition of Factored Translation

• Traditional phrase-based translation

- Decomposition of phrase translation häuser into English
 - 1. **Translation:** Mapping lemmas
 - haus → house, home, building, shell
 - 2. **Translation:** Mapping morphology
 - NN|plural-nominative-neutral → NN|plural, NN|singular
 - 3. **Generation:** Generating surface forms
 - house |NN| plural \rightarrow houses
 - house |NN| singular \rightarrow house
 - home |NN| plural \rightarrow homes
 - **–** ...

Expansion




Translation Mapping lemmas	Translation Mapping morphology	Generation Generating surface forms
? house ? ?	? house NN plural	houses house NN plural
? home ? ?	? house NN singular ? home NN plural	house NN singular homes home NN plural
\Rightarrow	? home NN singular \Rightarrow	home NN singular
? building ? ?	? building NN plural ? building NN singular	buildings building NN plural building building NN singular
? shell ? ?	? shell NN plural ? shell NN singular	shells shell NN plural shell shell NN singular

Learning Phrase Translations

Learning translation step models follows phrase-based model training

natürlich hat john — naturally john has ADV V NNP — ADV NNP V

- Generation models aestimated on the output side only
 - → only monolingual data needed
- Features: conditional probabilities

Efficient Decoding

- Factored models create translation options
 - independent of application context
 - \rightarrow pre-compute before decoding
- Expansion may create too many translation options
 - → intermediate pruning required
- Fundamental search algorithm does not change

morphology in neural models

Byte Pair Encoding

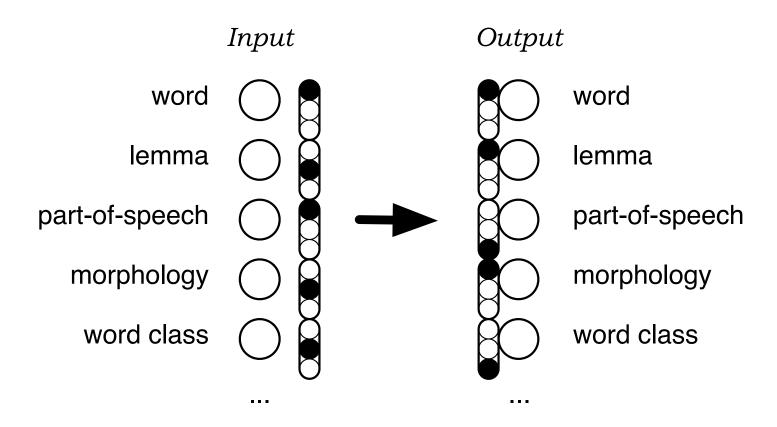
Obama receives Net@@ any@@ ahu

the relationship between Obama and Net@@ any@@ ahu is not exactly friendly. the two wanted to talk about the implementation of the international agreement and about Teheran 's destabil@@ ising activities in the Middle East . the meeting was also planned to cover the conflict with the Palestinians and the disputed two state solution . relations between Obama and Net@@ any@@ ahu have been stra@@ ined for years . Washington critic@@ ises the continuous building of settlements in Israel and acc@@ uses Net@@ any@@ ahu of a lack of initiative in the peace process. the relationship between the two has further deteriorated because of the deal that Obama negotiated on Iran 's atomic programme . in March , at the invitation of the Republic@@ ans , Net@@ any@@ ahu made a controversial speech to the US Congress , which was partly seen as an aff@@ ront to Obama . the speech had not been agreed with Obama, who had rejected a meeting with reference to the election that was at that time im@@ pending in Israel .

Subwords

- Byte pair encoding induces subwords
- But: only accidentally along linguistic concepts of morphology
 - morphological: critic@@ ises, im@@ pending
 - not morphological: aff@@ ront, Net@@ any@@ ahu
- Still: Similar to unsupervised morphology (frequent suffixes, etc.)

Character-Based Models



- Explicit word models that yield word embeddings
- Standard methods for frequent words
 - distribution of beautiful in the data
 - → embedding for beautiful
- Character-based models
 - create sequence embedding for character string b e a u t i f u l
 - training objective: match word embedding for beautiful
- Induce embeddings for unseen morphological variants
 - character string b e a u t i f u l l y
 - → embedding for beautifully
- Hope that this learns morphological principles

Factored Models

• Factored representation of words

• Encode each factor with a one-hot vector

Final Comments

- Need to balance rich surface form translation vs. decomposition
- Parameterization difficult
- Pre- / post-processing schemes → pipelining
- Supervised vs. unsupervised morphological analysis
- \Rightarrow some general principles learned, but no comprehensive solution yet