Neural Machine Translation

Philipp Koehn

3 October 2023
Language Models

- Modeling variants
 - feed-forward neural network
 - recurrent neural network
 - long short term memory neural network

- May include input context
Feed Forward Neural Language Model

Wi

Softmax

FF

h

Output Word

Hidden Layer

Ew

Embed Embed Embed Embed

Embedding

History

Wi-4 Wi-3 Wi-2 Wi-1
Recurrent Neural Language Model

Predict the first word of a sentence
Recurrent Neural Language Model

Predict the second word of a sentence
Re-use hidden state from first word prediction
Recurrent Neural Language Model

Predict the third word of a sentence
... and so on
Recurrent Neural Language Model

Input Word Embedding

RNN

Softmax

Output Word Prediction

RNN

Recurrent State

Embed

Input Word

Output Word

<\s>
Recurrent Neural Translation Model

- We predicted the words of a sentence

- Why not also predict their translations?
• Obviously madness

• Proposed by Google (Sutskever et al. 2014)
What is Missing?

• Alignment of input words to output words

⇒ Solution: attention mechanism
neural translation model with attention
• Inspiration: recurrent neural network language model on the input side
Hidden Language Model States

- This gives us the hidden states

- These encode left context for each word

- Same process in reverse: right context for each word
- Input encoder: concatenate bidirectional RNN states
- Each word representation includes full left and right sentence context
• Input is sequence of words x_j, mapped into embedding space $\bar{E} x_j$

• Bidirectional recurrent neural networks

$$\begin{align*}
\hat{h}_j &= f(\hat{h}_{j+1}, \bar{E} x_j) \\
\tilde{h}_j &= f(\tilde{h}_{j-1}, \bar{E} x_j)
\end{align*}$$

• Various choices for the function $f()$: feed-forward layer, GRU, LSTM, ...
We want to have a recurrent neural network predicting output words.
• We want to have a recurrent neural network predicting output words

• We feed decisions on output words back into the decoder state
• We want to have a recurrent neural network predicting output words

- We feed decisions on output words back into the decoder state
- Decoder state is also informed by the input context
More Detail

- Decoder is also recurrent neural network over sequence of hidden states s_i

 \[s_i = f(s_{i-1}, Ey_{i-1}, c_i) \]

- Again, various choices for the function $f()$: feed-forward layer, GRU, LSTM, ...

- Output word y_i is selected by computing a vector t_i (same size as vocabulary)

 \[t_i = W(U s_{i-1} + V Ey_{i-1} + C c_i) \]

 then finding the highest value in vector t_i

- If we normalize t_i, we can view it as a probability distribution over words

- Ey_i is the embedding of the output word y_i
• Given what we have generated so far (decoder hidden state)
• ... which words in the input should we pay attention to (encoder states)?
• Given: – the previous hidden state of the decoder s_{i-1}
 – the representation of input words $h_j = (\overrightarrow{h_j}, \overleftarrow{h_j})$

• Predict an alignment probability $a(s_{i-1}, h_j)$ to each input word j
 (modeled with a feed-forward neural network layer)
• Normalize attention (softmax)

\[
\alpha_{ij} = \frac{\exp(a(s_{i-1}, h_j))}{\sum_k \exp(a(s_{i-1}, h_k))}
\]
• Relevant input context: weigh input words according to attention: \(c_i = \sum_j \alpha_{ij} h_j \)
Attention

- Use context to predict next hidden state and output word
training
Comparing Prediction to Correct Word

- Current model gives some probability $t_i[y_i]$ to correct word y_i
- We turn this into an error by computing cross-entropy: $-\log t_i[y_i]$
Math behind neural machine translation defines a computation graph
Forward and backward computation to compute gradients for model training
Unrolled Computation Graph

- $E y_i$
- y_i
- $- \log t_i [y_i]$
- t_i
- s_i
- c_i
- a_{ij}
- \bar{h}_j
- h_j
- $\bar{E} x_j$
- x_j

Output Word Embeddings
Output Word
Error
Output Word Prediction
Decoder State
Input Context
Attention
Right-to-Left Encoder
Left-to-Right Encoder
Input Word Embedding
Input Word
Batching

• Already large degree of parallelism
 – most computations on vectors, matrices
 – efficient implementations for CPU and GPU

• Further parallelism by batching
 – processing several sentence pairs at once
 – scalar operation \rightarrow vector operation
 – vector operation \rightarrow matrix operation
 – matrix operation \rightarrow 3d tensor operation

• Typical batch sizes 50–100 sentence pairs
Batches

- Sentences have different length
- When batching, fill up unneeded cells in tensors

⇒ A lot of wasted computations
Mini-Batches

• Sort sentences by length, break up into mini-batches

• Example: Maxi-batch 1600 sentence pairs, mini-batch 80 sentence pairs
Overall Organization of Training

- Shuffle corpus
- Break into maxi-batches
- Break up each maxi-batch into mini-batches
- Process mini-batch, update parameters
- Once done, repeat
- Typically 5-15 epochs needed (passes through entire training corpus)
deeper models
Deeper Models

- Encoder and decoder are recurrent neural networks
- We can add additional layers for each step
- Recall shallow and deep language models

- Adding residual connections (short-cuts through deep layers) help
Deep Decoder

- Two ways of adding layers
 - deep transitions: several layers on path to output
 - deeply stacking recurrent neural networks

- Why not both?
Deep Encoder

• Previously proposed encoder already has 2 layers
 – left-to-right recurrent network, to encode left context
 – right-to-left recurrent network, to encode right context

⇒ Third way of adding layers