Language Models

- Modeling variants
 - feed-forward neural network
 - recurrent neural network
 - long short term memory neural network

- May include input context
Feed Forward Neural Language Model
Recurrent Neural Language Model

Given word
Embedding
Hidden state
Predicted word

Predict the first word of a sentence
Same as before, just drawn top-down

the
Recurrent Neural Language Model

Given word
Embedding
Hidden state
Predicted word

Predict the second word of a sentence
Re-use hidden state from first word prediction

<\(s\rangle\) the
Given word
Embedding
Hidden state
Predicted word

the
house
Recurrent Neural Language Model

The given word is embedded into a vector representation. The embedding is then fed into a recurrent neural network. The hidden state of the network is used to predict the next word in the sentence. This process is repeated for the third word, and so on.

- Given word
- Embedding
- Hidden state
- Predicted word

... and so on
Recurrent Neural Language Model

Given word

Embedding

Hidden state

Predicted word

<s> the house is big . </s>

the house is big .
Recurrent Neural Translation Model

- We predicted the words of a sentence
- Why not also predict their translations?
• Obviously madness

• Proposed by Google (Sutskever et al. 2014)
What is Missing?

- Alignment of input words to output words

⇒ Solution: attention mechanism
neural translation model with attention
Input Encoding

- Inspiration: recurrent neural network language model on the input side
Hidden Language Model States

• This gives us the hidden states

\[\text{H1} \rightarrow \text{H2} \rightarrow \text{H3} \rightarrow \text{H4} \rightarrow \text{H5} \rightarrow \text{H6} \]

• These encode left context for each word

• Same process in reverse: right context for each word

\[\text{H1} \leftarrow \text{H2} \leftarrow \text{H3} \leftarrow \text{H4} \leftarrow \text{H5} \leftarrow \text{H6} \]
• Input encoder: concatenate bidirectional RNN states

• Each word representation includes full left and right sentence context
Encoder: Math

• Input is sequence of words x_j, mapped into embedding space $\vec{E} x_j$

• Bidirectional recurrent neural networks

$$\vec{h}_j = f(\vec{h}_{j+1}, \vec{E} x_j)$$

$$\vec{h}_j = f(\vec{h}_{j-1}, \vec{E} x_j)$$

• Various choices for the function $f()$: feed-forward layer, GRU, LSTM, ...
• We want to have a recurrent neural network predicting output words
• We want to have a recurrent neural network predicting output words

• We feed decisions on output words back into the decoder state
We want to have a recurrent neural network predicting output words.

We feed decisions on output words back into the decoder state.

Decoder state is also informed by the input context.
• Decoder is also recurrent neural network over sequence of hidden states s_i

$$s_i = f(s_{i-1}, Ey_{i-1}, c_i)$$

• Again, various choices for the function $f()$: feed-forward layer, GRU, LSTM, ...

• Output word y_i is selected by computing a vector t_i (same size as vocabulary)

$$t_i = W(Us_{i-1} + V Ey_{i-1} + Cc_i)$$

then finding the highest value in vector t_i

• If we normalize t_i, we can view it as a probability distribution over words

• Ey_i is the embedding of the output word y_i
Attention

- Given what we have generated so far (decoder hidden state)
- ... which words in the input should we pay attention to (encoder states)?
Attention

- Given: – the previous hidden state of the decoder s_{i-1}
 – the representation of input words $h_j = (\overleftarrow{h_j}, \overrightarrow{h_j})$

- Predict an alignment probability $a(s_{i-1}, h_j)$ to each input word j
 (modeled with a feed-forward neural network layer)
• Normalize attention (softmax)

$$
\alpha_{ij} = \frac{\exp(a(s_{i-1}, h_j))}{\sum_k \exp(a(s_{i-1}, h_k))}
$$

• Relevant input context: weigh input words according to attention:

$$
c_i = \sum_j \alpha_{ij} h_j
$$
Attention

- Use context to predict next hidden state and output word
Encoder-Decoder with Attention

Input Word Embeddings
Left-to-Right Recurrent NN
Right-to-Left Recurrent NN
Attention
Input Context
Hidden State
Output Words
training
Math behind neural machine translation defines a computation graph
Forward and backward computation to compute gradients for model training
Unrolled Computation Graph

Given
Output Words
Error
Output Word Embedding
<s> the house is big . </s>
<s> das Haus ist groß , </s>

Input Word Embeddings
Left-to-Right Recurrent NN
Right-to-Left Recurrent NN
Attention
Input Context
Hidden State
Output Word Predictions
Batching

- Already large degree of parallelism
 - most computations on vectors, matrices
 - efficient implementations for CPU and GPU

- Further parallelism by batching
 - processing several sentence pairs at once
 - scalar operation \rightarrow vector operation
 - vector operation \rightarrow matrix operation
 - matrix operation \rightarrow 3d tensor operation

- Typical batch sizes 50–100 sentence pairs
Batches

- Sentences have different length
- When batching, fill up unneeded cells in tensors

⇒ A lot of wasted computations
Mini-Batches

- Sort sentences by length, break up into mini-batches

- Example: Maxi-batch 1600 sentence pairs, mini-batch 80 sentence pairs
Overall Organization of Training

- Shuffle corpus
- Break into maxi-batches
- Break up each maxi-batch into mini-batches
- Process mini-batch, update parameters
- Once done, repeat
- Typically 5-15 epochs needed (passes through entire training corpus)
deeper models
Deeper Models

- Encoder and decoder are recurrent neural networks
- We can add additional layers for each step
- Recall shallow and deep language models

[Diagram of shallow and deep models]

- Adding residual connections (short-cuts through deep layers) help
Deep Decoder

- Two ways of adding layers
 - deep transitions: several layers on path to output
 - deeply stacking recurrent neural networks

- Why not both?
Deep Encoder

• Previously proposed encoder already has 2 layers
 – left-to-right recurrent network, to encode left context
 – right-to-left recurrent network, to encode right context

⇒ Third way of adding layers

```
Input Word Embedding
Encoder Layer 1: L2R
Encoder Layer 2: R2L
Encoder Layer 3: L2R
Encoder Layer 4: R2L
```