Neural Machine Translation

Philipp Koehn

4 October 2022
Language Models

- Modeling variants
 - feed-forward neural network
 - recurrent neural network
 - long short term memory neural network

- May include input context
Feed Forward Neural Language Model

- **Wi**: Input Word
- **h**: Hidden Layer
- **Ew**: Embedding
- **Softmax**: Output Word
- **FF**: Hidden Layer
- **History**: Wi-4, Wi-3, Wi-2, Wi-1
Recurrent Neural Language Model

Predict the first word of a sentence
Recurrent Neural Language Model

Predict the second word of a sentence
Re-use hidden state from first word prediction
Recurrent Neural Language Model

Predict the third word of a sentence
... and so on
Recurrent Neural Language Model

\[
\begin{align*}
\text{Input Word} &\xrightarrow{\text{Embed}} \text{Input Word Embedding} \\
\text{RNN State} &\xrightarrow{\text{Softmax}} \text{Output Word Prediction} \\
\end{align*}
\]
Recurrence Neural Translation Model

- We predicted the words of a sentence

- Why not also predict their translations?
- Obviously madness

- Proposed by Google (Sutskever et al. 2014)
What is Missing?

- Alignment of input words to output words

⇒ Solution: attention mechanism
neural translation model with attention
Input Encoding

- Inspiration: recurrent neural network language model on the input side
Hidden Language Model States

- This gives us the hidden states

- These encode left context for each word

- Same process in reverse: right context for each word
Input encoder: concatenate bidirectional RNN states

Each word representation includes full left and right sentence context
Encoder: Math

- Input is sequence of words x_j, mapped into embedding space $\bar{E} x_j$

- Bidirectional recurrent neural networks

\[
\begin{align*}
\hat{h}_j &= f(\hat{h}_{j+1}, \bar{E} x_j) \\
\overrightarrow{h}_j &= f(\overrightarrow{h}_{j-1}, \bar{E} x_j)
\end{align*}
\]

- Various choices for the function $f()$: feed-forward layer, GRU, LSTM, ...
We want to have a recurrent neural network predicting output words.
• We want to have a recurrent neural network predicting output words

• We feed decisions on output words back into the decoder state
Decoder

- We want to have a recurrent neural network predicting output words

![Diagram of the Decoder]

- We feed decisions on output words back into the decoder state
- Decoder state is also informed by the input context
More Detail

- Decoder is also recurrent neural network over sequence of hidden states s_i

$$s_i = f(s_{i-1}, Ey_{i-1}, c_i)$$

- Again, various choices for the function $f()$: feed-forward layer, GRU, LSTM, ...

- Output word y_i is selected by computing a vector t_i (same size as vocabulary)

$$t_i = W(U s_{i-1} + V Ey_{i-1} + C c_i)$$

then finding the highest value in vector t_i

- If we normalize t_i, we can view it as a probability distribution over words

- Ey_i is the embedding of the output word y_i
• Given what we have generated so far (decoder hidden state)
• ... which words in the input should we pay attention to (encoder states)?
• Given: – the previous hidden state of the decoder s_{i-1}
 – the representation of input words $h_j = (\overleftarrow{h_j}, \overrightarrow{h_j})$

• Predict an alignment probability $a(s_{i-1}, h_j)$ to each input word j
 (modeled with with a feed-forward neural network layer)
• Normalize attention (softmax)

\[\alpha_{ij} = \frac{\exp(a(s_{i-1}, h_j))}{\sum_k \exp(a(s_{i-1}, h_k))} \]
• Relevant input context: weigh input words according to attention: \(c_i = \sum_j \alpha_{ij} h_j \)
• Use context to predict next hidden state and output word
training
Comparing Prediction to Correct Word

- Current model gives some probability \(t_i[y_i] \) to correct word \(y_i \)
- We turn this into an error by computing cross-entropy: \(-\log t_i[y_i] \)
Computation Graph

- Math behind neural machine translation defines a computation graph
- Forward and backward computation to compute gradients for model training
Unrolled Computation Graph

E yi Embed Embed Embed Embed Embed Embed

yi <s> das Haus ist groß . </s>

- \log t_i [y_i]

t_i Softmax Softmax Softmax Softmax Softmax Softmax

s_i RNN RNN RNN RNN RNN RNN

c_i Weighted Sum Weighted Sum Weighted Sum Weighted Sum Weighted Sum Weighted Sum

a_{ij} Attention Attention Attention Attention Attention Attention

\bar{h}_j RNN RNN RNN RNN RNN RNN

\bar{h}_j RNN RNN RNN RNN RNN RNN

\bar{E} x_j Embed Embed Embed Embed Embed Embed

x_j <s> the house is big . </s>

Output Word Embeddings
Output Word Error
Output Word Prediction
Decoder State
Input Context
Attention
Right-to-Left Encoder
Left-to-Right Encoder
Input Word Embedding
Input Word
• Already large degree of parallelism
 – most computations on vectors, matrices
 – efficient implementations for CPU and GPU

• Further parallelism by batching
 – processing several sentence pairs at once
 – scalar operation \rightarrow vector operation
 – vector operation \rightarrow matrix operation
 – matrix operation \rightarrow 3d tensor operation

• Typical batch sizes 50–100 sentence pairs
Batches

• Sentences have different length

• When batching, fill up unneeded cells in tensors

⇒ A lot of wasted computations
Mini-Batches

• Sort sentences by length, break up into mini-batches

• Example: Maxi-batch 1600 sentence pairs, mini-batch 80 sentence pairs
Overall Organization of Training

- Shuffle corpus
- Break into maxi-batches
- Break up each maxi-batch into mini-batches
- Process mini-batch, update parameters
- Once done, repeat
- Typically 5-15 epochs needed (passes through entire training corpus)
Deeper Models

- Encoder and decoder are recurrent neural networks
- We can add additional layers for each step
- Recall shallow and deep language models

- Adding residual connections (short-cuts through deep layers) help
Deep Decoder

- Two ways of adding layers
 - deep transitions: several layers on path to output
 - deeply stacking recurrent neural networks

- Why not both?
Deep Encoder

- Previously proposed encoder already has 2 layers
 - left-to-right recurrent network, to encode left context
 - right-to-left recurrent network, to encode right context

⇒ Third way of adding layers