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Machine Translation : The Generative Story

e Given a source sentence f, we want to find the most likely translation e*

e* = arg max p(elf)

= arg max p(f|e) p(e) (Bayes Rule)

e

— arg max Z p(f,ale) p(e) (Marginalize over alignments)

e The alignments a are latent. p(f, ale) is typically decomposed as:

— Lexical /Phrase Translation Model
— An Alignment/Distortion Model

e p(e) is the Language Model
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Machine Translation : Additional Features -

e Decoding may find features besides the ones derived from the generative model
useful

— reordering (distortion) model

— phrase/word translation model
— language models

— word count

— phrase count

e In phrase based models, how do you explicitly measure the quality of a phrase
pair ?

e Weights are typically tuned on a development set using discriminative training.
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Neural Networks and Machine Translation :

e The use of neural networks has been proposed for almost all components of
machine translation.

e We will look at three propositions today. One for each of the following:

— Language Models
p(eiler---ei—1)

— Additional features for machine translation

p(elf) = 7 (a feature k; has a weight \;)

— Translation and Alignment models

p(f,ale)
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Neural Language Models
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Neural Language Models > QY

e Neural Network Joint Model (NNJM) (Devlin et al., ACL 2014)

— Extends the neural network language models (NNLM) (Bengio et al., 2003;
Schwenk, 2010)

— Incorporates source side context in language models

— Requires parallel text with alignments to train

— Speedup tricks makes querying as fast as backoft LMs

e Main Idea : Incorporate source side context

€]

p(e,alf) ~ Hp eilei—1 €i—ny1, Fi)

Where F; is the source context vector
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Neural Network Joint Model (NNJM) o QY
e Main Idea : Incorporate source side context
€]
p(e,alf) = p(elf) ~ Hp eilei—1- - €i—nt1, Fi)
— Where F; is the source context vector
— ais a deterministic function of e and f
— Use a source context window around f,..
S: & st (m (&%l 7] i
i will get money to  pertf. them
T: [i | |will | [get] ! the money to them
P(the | get, will, i, 5, HY, ¥%, 45, 1)
— This is effectively an (n 4+ m)-gram language model.
Gaurav Kumar Neural Machine Translation 03/03/2015



Neural Network Joint Model (NNJM) : Training

o A feed-forward neural network is used (two hidden layers)

e The input is the concatenated word embeddings for the ((n — 1) + m) context
vector

e OOVs are mapped to their POS tags (special OOV tag when no POS tag is
available)

e Training is done using back-propagation with the maximization of the log-
likelihood of the training data as the objective

L= Z log(p(w;))

where z; is one training sample.
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Speedup Trick : Normalization 8

e A softmax over the entire target vocabulary is expensive

U»p(a:)

p(T) = —~v1—
SV Ui

where U, (z) is the activated value of the output layer corresponding to the
observed target word and V; is the length of the target vocabulary

e Main Idea : Force Z(z) to be close to 1 by augmenting the objective function

L= [log(p(z:)) — alog™(Z(x:))]

— Maximizing this objective will encourage log”(Z(x;)) to have values close to 0.
— «is a parameter that can be tuned for a trade-off between accuracy and mean
normalization error.
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Speedup Trick : Pre-computing first hidden laye
e Use the fact that this is an (n — 1) + m-gram model.
e A target word can be in one of (n — 1) positions.
e A source word can be in one of m positions.

e Main Idea : The dot product of each word in each position contributes a
constant value to the hidden layer.

e Pre-compute the contributions and store them.  Total number of pre-
computations :

(n = 1) X |[Vi| +m x V]

o Computing the first hidden later requires only a lookup for a word in a position
now.
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o QW

Additional features for Machine Translation

Phrasal Similarity
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Features based on phrase similarity 1

Why can’t you trust (all) phrase pairs?

Rare phrases: Rare phrase pair occurrences provide a sub-optimal estimate for
phrase translation probabilities.

p(sorona | tristifical) =1

p(tristifical | sorona) =1

Independence assumptions : The choice to use one phrase pair over an another
is largely independent of previous decisions.

Segmentation : Phrase segmentation is generally not linguistically motivated
and a large percentage of the phrase pairs are not good translations.

(!, veinte dlares, era, you! twenty dollars, it was)

(Exactamente como , how they want to)

More information about phrases is (almost) always good.
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Features based on phrase similarity 12

e Bilingual Constrained Recursive Autoencoders (BRAE) (Zhang et al., ACL, 2014)

— Extends the use of unsupervised recursive encoders for phrase embedding
(Socher et al., Li et al., 2013)

— Main Idea : Find an embedding for each source phrase such that its
embedding is close to the one for the corresponding target phrase (via
transformation).

(000000 0)x

(a) Input (b) Neural Encoding (c) Reconstruction

Figure 1: An autoencoder (Image from Lemme et al., 2010)
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Phrase Embedding with Autoencoders
4 QY

-
S

‘‘‘‘‘

A,

e Given two child vectors ¢; = x; and ¢z = x5, the parent vector can be computed
as

p=fFWWer;eq] + 1)

e and the children can be reconstructed as

¢ ch] = fFW@p + b))
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Phrase Embedding with RAE 14

Phrase embedding with Recursive autoencoders

e Multi-word phrase
e Combine two leaves using the same autoencoder
e Continue for a binary tree until only one node (the root) remains.

e The root represents the embedding for the phrase
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Phrase Embedding with RAE 15

e The error of reconstruction for one example

1
Erec(lc1;ca]) = 5“[01502] — [e1; ]l

e The goal is to minimize this reconstruction error at each node for the optimal
binary tree (for one phrase z)

RAFEy(x) = arg min Z Erec(lc1; e2]s)

where A(x) is the set of all binary trees for this phrase.
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Autoencoders for Multi-Objective Learning i

Reconstruction Error Prediction Error

'@@J @' ! |

W(label)

e A RAE can be used to predict a target label

— Polarity in sentiment analysis (Socher et al., 2011)
— Syntactic category in parsing (Socher et al., 2013)
— Phrase reordering pattern for SMT (Li et al., 2013)

e Given a phrase and a label (z,t) the error becomes
E(x,t;0) = aErec(x,t;0) + (1 — a)Eprea(x, t;0)

where « is the interpolation hyper-parameter.
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Bilingual Constrained Recursive Autoencoders

Source Reconstruction Error Target Reconstruction Error
‘oqo apo) ‘oqo o
o We o

~US - Ws(label) Source Prediction Error . !
N N S\ 7
)/ a4

Source Language Phrase Target Language Phrase

e For a phrase pair (s, t)

— The reconstruction error is

Erec(87 t; 6) — Erec(3§ 9) + Erec(t; 9)

— The semantic error is

Esem<37 t; 9) — Esem(s‘t; 9) + Esem(t‘s; 9)
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Bilingual Constrained Recursive Autoencoders

Source Reconstruction Error Target Reconstruction Error

| | | j

W(l abel) Source Prediction Error

Target Prediction Error W (13b¢)
W, wA

Source Language Phrase Target Language Phrase

e The semantic error Es.,,(s|t;8) can be computed as

Esem(s|t; 0) = —Hpt — [(Weps + b))

e For each phrase pait (s, t) the joint error is

E(s,t;0) = aFrec(s,t;0) + (1 — a)Esem(s|t; 0)
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BRAE : Phrasal similarity 19

e Given any phrase pair (s, t) this trained model can compute
— The similarity between the transformed source and the target Sim(ps*, pt)
— The similarity between the transformed target and the source Sim(p;*, ps)
e These can be used as:

— Features to prune the phrase table
— Features for discriminative training in phrase based SMT
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Joint Alignment and Translation
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Learning to align and translate 21

Joint learning of alignment and translation (Bahdanau et al., 2015)

e One model for translation and alignment

e Extends the standard RNN encoder-decoder framework for neural network
based machine translation

o Allows the use of an alignment based soft search over the input

e In the presence of a deterministic alignment, this model simplifies into a
translation model
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RNN encoder-decoder 22

e Encoder : Given any sequence of vectors (f1,--- , f7)
si=1(f;8-1) (Hidden state)
c=q({s1," - ,85}) (The context vector)

where s; € R"” is the hidden state at time j, c is the context vector generated
from the hidden states and r and ¢ are some non-linear functions.

e Decoder : Predict e; given ey, - - - , e;_; and the context c.
I
p(e) = | [ pleil{er, - eic1}.c) (Joint probability)
i=1
pled{er, -+ ,ei—1},¢) =glei—1,t;,¢) (Conditional probability)

where t; is the hidden state of the RNN and ¢ is some non-linear function that
outputs a probability.
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. . . =X
Joint alignment and translation : Decoder :: Q¥
e The conditional probability is now defined as
pleil{er, - ei—1},¢) = glei—1, i, ¢;)

where t; = g(t;_1,€e;_1, ¢;) is the hidden state.

e The context vector depends on representations that the encoder maps the input
sentence to. (f; — h;)

Ty
C;, — E Ozijhj
J=1

where the weight «;; is calculated as
__ exp(eqy)
= —7
D ko1 €xXp(€ik)

and e;; = a(t;—1, h;) is the alignment model.

Oéz‘j
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Joint alignment and translation : Decoder 2

h1 2 ho | hy [ —\h;
fi 2 3 fr

Figure 2: The hidden states depend on the input representations weighted by how
well they align with the target word
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oint alienment and translation : Encoder =
8

e We want the representation for each word to contain information about the
forward and the backward context.

e Use Bi-directional RN Ns where

— The forward RNN NZ reads { f1,-- -, f7} and generates {hﬁ, X ,hj}
— The backward RNN N reads {f;, -, f1} and generates {;71, - hyt}
— — —
[ ha e [
J1 J2 IE fJ
e [~

Figure 3: Concatenate forward and backward hidden states to obtain the
representation for each word.
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Joint alignment and translation : Decoder =

Figure 4: Putting it all together : The annotations created by concatenating the
hidden states are used by the decoder
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Conclusion
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How well do these models perform ? =

e NNJM uses source side context along with the target side.
— +3.0 BLEU gain over a state of-the-art S2T system with NNLM.
— +6.0 BLEU gain over a simple hierarchical system with regular n-gram LMs.
e BRAE adds additional features which describe phrasal similarity to an existing
translation model.
— Reduced loss in translation quality while pruning compared to Significance
pruning.
e The joint-alignment-translation RNN describes one self-sufficient system for

alighment and translation.

— Results comparable with current phrase based systems.
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