Machine Translation and Neural Networks

Gaurav Kumar Center for Language and Speech Processing Johns Hopkins University gkumar@cs.jhu.edu

03/03/2015

• Given a source sentence ${\bf f}$, we want to find the most likely translation ${\bf e}^*$

$$e^{*} = \arg \max_{\mathbf{e}} p(\mathbf{e}|\mathbf{f})$$

= $\arg \max_{\mathbf{e}} p(\mathbf{f}|\mathbf{e}) p(\mathbf{e})$ (Bayes Rule)
= $\arg \max_{\mathbf{e}} \sum_{\mathbf{a}} p(\mathbf{f}, \mathbf{a}|\mathbf{e}) p(\mathbf{e})$ (Marginalize over alignments)

- The alignments a are latent. $p(\mathbf{f}, \mathbf{a} | \mathbf{e})$ is typically decomposed as:
 - Lexical/Phrase Translation Model
 - An Alignment/Distortion Model
- *p*(**e**) is the Language Model

Machine Translation : Additional Features

- Decoding may find features besides the ones derived from the generative model useful
 - reordering (distortion) model
 - phrase/word translation model
 - language models
 - word count
 - phrase count
- In phrase based models, how do you explicitly measure the quality of a phrase pair ?
- Weights are typically tuned on a *development* set using discriminative training.

Neural Networks and Machine Translation 3

- The use of neural networks has been proposed for almost all components of machine translation.
- We will look at three propositions today. One for each of the following:
 - Language Models

 $p(e_i|e_1\cdots e_{i-1})$

- Additional features for machine translation

$$p(\mathbf{e}|\mathbf{f}) = \frac{\sum_i \lambda_i \ k_i}{Z}$$

(a feature k_i has a weight λ_i)

- Translation and Alignment models

 $p(\mathbf{f}, \mathbf{a} | \mathbf{e})$

Neural Language Models

Neural Language Models

- Neural Network Joint Model (NNJM) (Devlin et al., ACL 2014)
 - Extends the neural network language models (NNLM) (*Bengio et al., 2003; Schwenk, 2010*)
 - Incorporates source side context in language models
 - Requires parallel text with alignments to train
 - Speedup tricks makes querying as fast as backoff LMs
- Main Idea : Incorporate source side context

$$p(\mathbf{e}, \mathbf{a} | \mathbf{f}) \approx \prod_{i=1}^{|\mathbf{e}|} p(e_i | e_{i-1} \cdots e_{i-n+1}, \mathcal{F}_i)$$

Where \mathcal{F}_i is the source context vector

Neural Network Joint Model (NNJM)

• Main Idea : Incorporate source side context

$$p(\mathbf{e}, \mathbf{a}|\mathbf{f}) = p(\mathbf{e}|\mathbf{f}) \approx \prod_{i=1}^{|\mathbf{e}|} p(e_i|e_{i-1}\cdots e_{i-n+1}, \mathcal{F}_i)$$

- Where \mathcal{F}_i is the source context vector
- a is a deterministic function of e and f
- Use a source context window around f_{a_i} .

- This is effectively an (n + m)-gram language model.

Neural Network Joint Model (NNJM) : Training

- A feed-forward neural network is used (two hidden layers)
- The input is the concatenated word embeddings for the ((n-1) + m) context vector
- OOVs are mapped to their POS tags (special OOV tag when no POS tag is available)
- Training is done using back-propagation with the maximization of the loglikelihood of the training data as the objective

$$L = \sum_{i} \log(p(x_i))$$

where x_i is one training sample.

Speedup Trick : Normalization

• A softmax over the entire target vocabulary is expensive

$$p(x) = \frac{e^{U_r(x)}}{\sum_{\mathbf{r}'=1}^{|\mathbf{V}_t|} \mathbf{e}^{\mathbf{U}'_r(\mathbf{x})}}$$

where $U_r(x)$ is the activated value of the output layer corresponding to the observed target word and V_t is the length of the target vocabulary

• Main Idea : Force Z(x) to be close to 1 by augmenting the objective function

$$L = \sum_{i} \left[\log(p(x_i)) - \alpha \log^2(Z(x_i)) \right]$$

- Maximizing this objective will encourage $\log^2(Z(x_i))$ to have values close to 0.
- α is a parameter that can be tuned for a trade-off between accuracy and mean normalization error.

Speedup Trick : Pre-computing first hidden layer

- Use the fact that this is an (n-1) + m-gram model.
- A target word can be in one of (n 1) positions.
- A source word can be in one of *m* positions.
- **Main Idea :** The dot product of each word in each position contributes a constant value to the hidden layer.
- Pre-compute the contributions and store them. Total number of precomputations :

$$[(n-1) \times |V_t| + m \times |V_s|]$$

• Computing the first hidden later requires only a lookup for a word in a position now.

Additional features for Machine Translation

Phrasal Similarity

Features based on phrase similarity

Why can't you trust (all) phrase pairs?

• **Rare phrases**: Rare phrase pair occurrences provide a sub-optimal estimate for phrase translation probabilities.

 $p(\text{sorona} \mid \text{tristifical}) = 1$ $p(\text{tristifical} \mid \text{sorona}) = 1$

- **Independence assumptions** : The choice to use one phrase pair over an another is largely independent of previous decisions.
- Segmentation : Phrase segmentation is generally not linguistically motivated and a large percentage of the phrase pairs are not good translations.
 (!, veinte dlares, era, you! twenty dollars, it was)
 (Exactamente como , how they want to)
- More information about phrases is (almost) always good.

Features based on phrase similarity

- Bilingual Constrained Recursive Autoencoders (BRAE) (*Zhang et al., ACL, 2014*)
 - Extends the use of unsupervised recursive encoders for phrase embedding (*Socher et al., Li et al., 2013*)
 - **Main Idea :** Find an embedding for each source phrase such that its embedding is close to the one for the corresponding target phrase (via transformation).

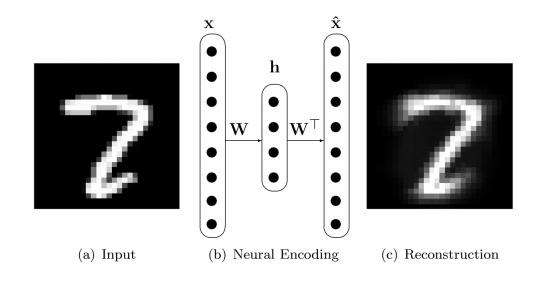
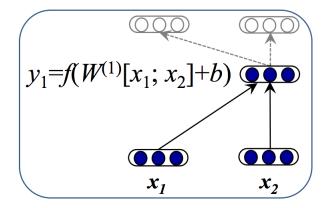


Figure 1: An autoencoder (Image from Lemme et al., 2010)

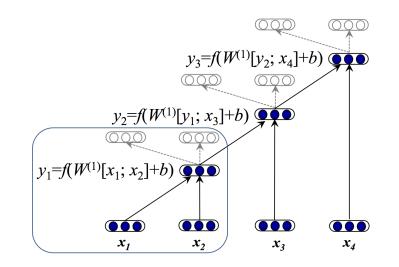
Phrase Embedding with Autoencoders



- Given two child vectors $c_1 = x_1$ and $c_2 = x_2$, the parent vector can be computed as $p = f(W^{(1)}[c_1; c_2] + b^{(1)})$
- and the children can be reconstructed as

 $[c'_1; c'_2] = f(W^{(2)}p + b^{(2)})$

Phrase Embedding with RAE



Phrase embedding with **Recursive** autoencoders

- Multi-word phrase
- Combine two leaves using the **same** autoencoder
- Continue for a binary tree until only one node (the root) remains.
- The root represents the embedding for the phrase

Phrase Embedding with RAE

• The error of reconstruction for one example

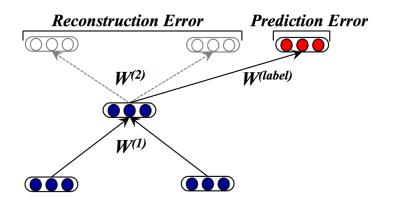
$$E_{rec}([c_1; c_2]) = \frac{1}{2} ||[c_1; c_2] - [c'_1; c'_2]||^2$$

• The goal is to minimize this reconstruction error at each node for the optimal binary tree (for one phrase *x*)

$$RAE_{\theta}(x) = \underset{y \in A(x)}{\operatorname{arg\,min}} \sum_{s \in y} E_{rec}([c_1; c_2]_s)$$

where A(x) is the set of all binary trees for this phrase.

Autoencoders for Multi-Objective Learning 16

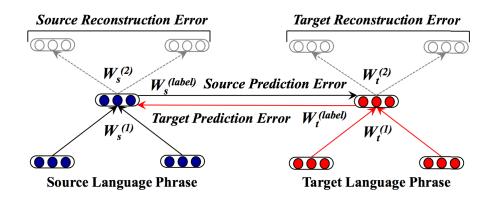


- A RAE can be used to predict a target label
 - Polarity in sentiment analysis (Socher et al., 2011)
 - Syntactic category in parsing (*Socher et al., 2013*)
 - Phrase reordering pattern for SMT (*Li et al., 2013*)
- Given a phrase and a label (x, t) the error becomes

 $E(x,t;\theta) = \alpha E_{rec}(x,t;\theta) + (1-\alpha)E_{pred}(x,t;\theta)$

where α is the interpolation hyper-parameter.

Bilingual Constrained Recursive Autoencoders



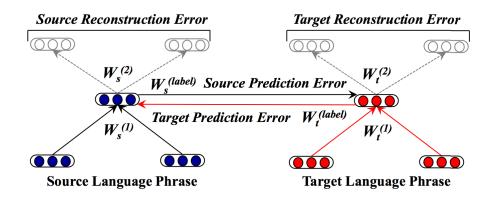
- For a phrase pair (s, t)
 - The reconstruction error is

$$E_{rec}(s,t;\theta) = E_{rec}(s;\theta) + E_{rec}(t;\theta)$$

– The semantic error is

$$E_{sem}(s,t;\theta) = E_{sem}(s|t;\theta) + E_{sem}(t|s;\theta)$$

Bilingual Constrained Recursive Autoencoders



• The semantic error $E_{sem}(s|t;\theta)$ can be computed as

$$E_{sem}(s|t;\theta) = \frac{1}{2}||p_t - f(W_s^l p_s + b_s^l)||^2$$

• For each phrase pait (s, t) the joint error is

$$E(s,t;\theta) = \alpha E_{rec}(s,t;\theta) + (1-\alpha)E_{sem}(s|t;\theta)$$

BRAE : Phrasal similarity

- Given any phrase pair (s, t) this trained model can compute
 - The similarity between the transformed source and the target $Sim(p_s*, p_t)$
 - The similarity between the transformed target and the source $Sim(p_t*, p_s)$
- These can be used as :
 - Features to prune the phrase table
 - Features for discriminative training in phrase based SMT

Joint Alignment and Translation

Learning to align and translate

Joint learning of alignment and translation (Bahdanau et al., 2015)

- One model for translation and alignment
- Extends the standard RNN encoder-decoder framework for neural network based machine translation
- Allows the use of an alignment based soft search over the input
- In the presence of a deterministic alignment, this model simplifies into a translation model

RNN encoder-decoder

• **Encoder** : Given any sequence of vectors (f_1, \dots, f_J)

 $s_j = r(f_j, s_{j-1})$ (Hidden state) $c = q(\{s_1, \cdots, s_J\})$ (The context vector)

where $s_j \in \mathbb{R}^n$ is the hidden state at time j, c is the context vector generated from the hidden states and r and q are some non-linear functions.

• **Decoder** : Predict e_i given e_1, \dots, e_{i-1} and the context c.

$$p(\mathbf{e}) = \prod_{i=1}^{I} p(e_i | \{e_1, \cdots, e_{i-1}\}, c)$$
(Joint probability)
$$p(e_t | \{e_1, \cdots, e_{i-1}\}, c) = g(e_{i-1}, t_i, c)$$
(Conditional probability)

where t_i is the hidden state of the RNN and g is some non-linear function that outputs a probability.

Joint alignment and translation : Decoder

• The conditional probability is now defined as

 $p(e_i|\{e_1,\cdots,e_{i-1}\},c) = g(e_{i-1},t_i,c_i)$

where $t_i = g(t_{i-1}, e_{i-1}, c_i)$ is the hidden state.

• The context vector depends on representations that the encoder maps the input sentence to. $(f_j \rightarrow h_j)$

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

where the weight α_{ij} is calculated as

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

and $e_{ij} = a(t_{i-1}, h_j)$ is the alignment model.

Joint alignment and translation : Decoder 24

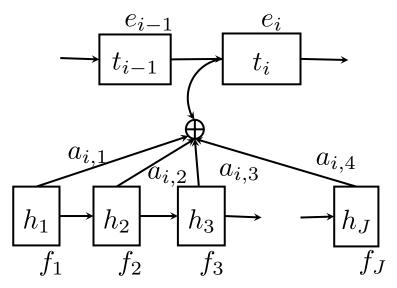


Figure 2: The hidden states depend on the input representations weighted by how well they align with the target word

Joint alignment and translation : Encoder

- We want the representation for each word to contain information about the forward and the backward context.
- Use Bi-directional RNNs where
 - The forward RNN \overrightarrow{N} reads $\{f_1, \dots, f_J\}$ and generates $\{\overrightarrow{h_1}, \dots, \overrightarrow{h_J}\}$ The backward RNN \overleftarrow{N} reads $\{f_J, \dots, f_1\}$ and generates $\{\overrightarrow{h_1}, \dots, \overrightarrow{h_J}\}$

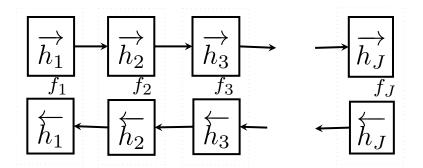


Figure 3: Concatenate forward and backward hidden states to obtain the representation for each word.

Joint alignment and translation : Decoder ²⁶

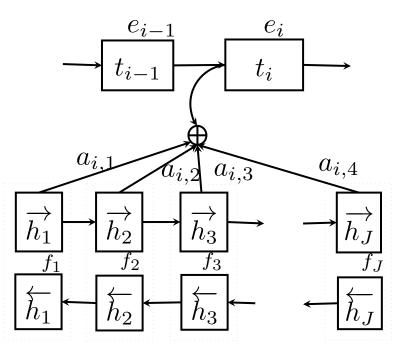


Figure 4: Putting it all together : The annotations created by concatenating the hidden states are used by the decoder

Conclusion

How well do these models perform ?

- **NNJM** uses source side context along with the target side.
 - +3.0 BLEU gain over a state of-the-art S2T system with NNLM.
 - +6.0 BLEU gain over a simple hierarchical system with regular n-gram LMs.
- **BRAE** adds additional features which describe phrasal similarity to an existing translation model.
 - Reduced loss in translation quality while pruning compared to Significance pruning.
- The **joint-alignment-translation RNN** describes one self-sufficient system for alignment and translation.
 - Results comparable with current phrase based systems.

Acknowledgments

- Philipp Koehn for the slide template.
- Yuan Cao, Sanjeev Khudanpur and Philipp Koehn for feedback on content and structure.
- The MT@JHU reading group for the ideas.