
Machine Translation and Neural Networks

Gaurav Kumar
Center for Language and Speech Processing

Johns Hopkins University
gkumar@cs.jhu.edu

03/03/2015

Gaurav Kumar Neural Machine Translation 03/03/2015

1Machine Translation : The Generative Story

• Given a source sentence f , we want to find the most likely translation e∗

e∗ = argmax
e

p(e|f)

= argmax
e

p(f |e) p(e) (Bayes Rule)

= argmax
e

∑
a

p(f ,a|e) p(e) (Marginalize over alignments)

• The alignments a are latent. p(f ,a|e) is typically decomposed as:

– Lexical/Phrase Translation Model
– An Alignment/Distortion Model

• p(e) is the Language Model

Gaurav Kumar Neural Machine Translation 03/03/2015

2Machine Translation : Additional Features

• Decoding may find features besides the ones derived from the generative model
useful

– reordering (distortion) model
– phrase/word translation model
– language models
– word count
– phrase count

• In phrase based models, how do you explicitly measure the quality of a phrase
pair ?

• Weights are typically tuned on a development set using discriminative training.

Gaurav Kumar Neural Machine Translation 03/03/2015

3Neural Networks and Machine Translation

• The use of neural networks has been proposed for almost all components of
machine translation.

• We will look at three propositions today. One for each of the following:

– Language Models
p(ei|e1 · · · ei−1)

– Additional features for machine translation

p(e|f) =
∑
i λi ki
Z

(a feature ki has a weight λi)

– Translation and Alignment models

p(f ,a|e)

Gaurav Kumar Neural Machine Translation 03/03/2015

4

Neural Language Models

Gaurav Kumar Neural Machine Translation 03/03/2015

5Neural Language Models

• Neural Network Joint Model (NNJM) (Devlin et al., ACL 2014)

– Extends the neural network language models (NNLM) (Bengio et al., 2003;
Schwenk, 2010)

– Incorporates source side context in language models
– Requires parallel text with alignments to train
– Speedup tricks makes querying as fast as backoff LMs

• Main Idea : Incorporate source side context

p(e,a|f) ≈
|e|∏
i=1

p(ei|ei−1 · · · ei−n+1,Fi)

Where Fi is the source context vector

Gaurav Kumar Neural Machine Translation 03/03/2015

6Neural Network Joint Model (NNJM)

• Main Idea : Incorporate source side context

p(e,a|f) = p(e|f) ≈
|e|∏
i=1

p(ei|ei−1 · · · ei−n+1,Fi)

– Where Fi is the source context vector
– a is a deterministic function of e and f
– Use a source context window around fai.

– This is effectively an (n+m)-gram language model.

Gaurav Kumar Neural Machine Translation 03/03/2015

7Neural Network Joint Model (NNJM) : Training

• A feed-forward neural network is used (two hidden layers)

• The input is the concatenated word embeddings for the ((n − 1) + m) context
vector

• OOVs are mapped to their POS tags (special OOV tag when no POS tag is
available)

• Training is done using back-propagation with the maximization of the log-
likelihood of the training data as the objective

L =
∑
i

log(p(xi))

where xi is one training sample.

Gaurav Kumar Neural Machine Translation 03/03/2015

8Speedup Trick : Normalization

• A softmax over the entire target vocabulary is expensive

p(x) =
eUr(x)∑|Vt|

r′=1 e
U′r(x)

where Ur(x) is the activated value of the output layer corresponding to the
observed target word and Vt is the length of the target vocabulary

• Main Idea : Force Z(x) to be close to 1 by augmenting the objective function

L =
∑
i

[
log(p(xi))− α log2(Z(xi))

]

– Maximizing this objective will encourage log2(Z(xi)) to have values close to 0.
– α is a parameter that can be tuned for a trade-off between accuracy and mean

normalization error.

Gaurav Kumar Neural Machine Translation 03/03/2015

9Speedup Trick : Pre-computing first hidden layer

• Use the fact that this is an (n− 1) +m-gram model.

• A target word can be in one of (n− 1) positions.

• A source word can be in one of m positions.

• Main Idea : The dot product of each word in each position contributes a
constant value to the hidden layer.

• Pre-compute the contributions and store them. Total number of pre-
computations :

[(n− 1)× |Vt|+m× |Vs|]

• Computing the first hidden later requires only a lookup for a word in a position
now.

Gaurav Kumar Neural Machine Translation 03/03/2015

10

Additional features for Machine Translation

Phrasal Similarity

Gaurav Kumar Neural Machine Translation 03/03/2015

11Features based on phrase similarity
Why can’t you trust (all) phrase pairs?

• Rare phrases: Rare phrase pair occurrences provide a sub-optimal estimate for
phrase translation probabilities.
p(sorona | tristifical) = 1
p(tristifical | sorona) = 1

• Independence assumptions : The choice to use one phrase pair over an another
is largely independent of previous decisions.

• Segmentation : Phrase segmentation is generally not linguistically motivated
and a large percentage of the phrase pairs are not good translations.
(!, veinte dlares, era, you! twenty dollars, it was)
(Exactamente como , how they want to)

• More information about phrases is (almost) always good.

Gaurav Kumar Neural Machine Translation 03/03/2015

12Features based on phrase similarity

• Bilingual Constrained Recursive Autoencoders (BRAE) (Zhang et al., ACL, 2014)

– Extends the use of unsupervised recursive encoders for phrase embedding
(Socher et al., Li et al., 2013)

– Main Idea : Find an embedding for each source phrase such that its
embedding is close to the one for the corresponding target phrase (via
transformation).

Figure 1: An autoencoder (Image from Lemme et al., 2010)

Gaurav Kumar Neural Machine Translation 03/03/2015

13Phrase Embedding with Autoencoders

• Given two child vectors c1 = x1 and c2 = x2, the parent vector can be computed
as

p = f(W (1)[c1; c2] + b(1))

• and the children can be reconstructed as

[c′1; c
′
2] = f(W (2)p+ b(2))

Gaurav Kumar Neural Machine Translation 03/03/2015

14Phrase Embedding with RAE

Phrase embedding with Recursive autoencoders

• Multi-word phrase

• Combine two leaves using the same autoencoder

• Continue for a binary tree until only one node (the root) remains.

• The root represents the embedding for the phrase

Gaurav Kumar Neural Machine Translation 03/03/2015

15Phrase Embedding with RAE

• The error of reconstruction for one example

Erec([c1; c2]) =
1

2
||[c1; c2]− [c′1; c

′
2]||2

• The goal is to minimize this reconstruction error at each node for the optimal
binary tree (for one phrase x)

RAEθ(x) = argmin
y∈A(x)

∑
s∈y

Erec([c1; c2]s)

where A(x) is the set of all binary trees for this phrase.

Gaurav Kumar Neural Machine Translation 03/03/2015

16Autoencoders for Multi-Objective Learning

• A RAE can be used to predict a target label

– Polarity in sentiment analysis (Socher et al., 2011)
– Syntactic category in parsing (Socher et al., 2013)
– Phrase reordering pattern for SMT (Li et al., 2013)

• Given a phrase and a label (x, t) the error becomes

E(x, t; θ) = αErec(x, t; θ) + (1− α)Epred(x, t; θ)

where α is the interpolation hyper-parameter.

Gaurav Kumar Neural Machine Translation 03/03/2015

17Bilingual Constrained Recursive Autoencoders

• For a phrase pair (s, t)

– The reconstruction error is

Erec(s, t; θ) = Erec(s; θ) + Erec(t; θ)

– The semantic error is

Esem(s, t; θ) = Esem(s|t; θ) + Esem(t|s; θ)

Gaurav Kumar Neural Machine Translation 03/03/2015

18Bilingual Constrained Recursive Autoencoders

• The semantic error Esem(s|t; θ) can be computed as

Esem(s|t; θ) =
1

2
||pt − f(W l

sps + bls)||2

• For each phrase pait (s, t) the joint error is

E(s, t; θ) = αErec(s, t; θ) + (1− α)Esem(s|t; θ)

Gaurav Kumar Neural Machine Translation 03/03/2015

19BRAE : Phrasal similarity

• Given any phrase pair (s, t) this trained model can compute

– The similarity between the transformed source and the target Sim(ps∗, pt)
– The similarity between the transformed target and the source Sim(pt∗, ps)

• These can be used as :

– Features to prune the phrase table
– Features for discriminative training in phrase based SMT

Gaurav Kumar Neural Machine Translation 03/03/2015

20

Joint Alignment and Translation

Gaurav Kumar Neural Machine Translation 03/03/2015

21Learning to align and translate
Joint learning of alignment and translation (Bahdanau et al., 2015)

• One model for translation and alignment

• Extends the standard RNN encoder-decoder framework for neural network
based machine translation

• Allows the use of an alignment based soft search over the input

• In the presence of a deterministic alignment, this model simplifies into a
translation model

Gaurav Kumar Neural Machine Translation 03/03/2015

22RNN encoder-decoder

• Encoder : Given any sequence of vectors (f1, · · · , fJ)

sj = r(fj, sj−1) (Hidden state)

c = q({s1, · · · , sJ}) (The context vector)

where sj ∈ Rn is the hidden state at time j, c is the context vector generated
from the hidden states and r and q are some non-linear functions.

• Decoder : Predict ei given e1, · · · , ei−1 and the context c.

p(e) =

I∏
i=1

p(ei|{e1, · · · , ei−1}, c) (Joint probability)

p(et|{e1, · · · , ei−1}, c) = g(ei−1, ti, c) (Conditional probability)

where ti is the hidden state of the RNN and g is some non-linear function that
outputs a probability.

Gaurav Kumar Neural Machine Translation 03/03/2015

23Joint alignment and translation : Decoder

• The conditional probability is now defined as

p(ei|{e1, · · · , ei−1}, c) = g(ei−1, ti, ci)

where ti = g(ti−1, ei−1, ci) is the hidden state.

• The context vector depends on representations that the encoder maps the input
sentence to. (fj → hj)

ci =

Tx∑
j=1

αijhj

where the weight αij is calculated as

αij =
exp(eij)∑Tx
k−1 exp(eik)

and eij = a(ti−1, hj) is the alignment model.

Gaurav Kumar Neural Machine Translation 03/03/2015

24Joint alignment and translation : Decoder

ti−1 ti

ei−1 ei

h1 h2 h3 hJ

f1 f2 f3 fJ

ai,1
ai,2 ai,3

ai,4

Figure 2: The hidden states depend on the input representations weighted by how
well they align with the target word

Gaurav Kumar Neural Machine Translation 03/03/2015

25Joint alignment and translation : Encoder

• We want the representation for each word to contain information about the
forward and the backward context.

• Use Bi-directional RNNs where

– The forward RNN
−→
N reads {f1, · · · , fJ} and generates {

−→
h1, · · · ,

−→
hJ}

– The backward RNN
←−
N reads {fJ , · · · , f1} and generates {

←−
h1, · · · ,

←−
hJ}

−→
h1

−→
h2

−→
h3

−→
hJ

f1 f2 f3 fJ

←−
h1

←−
h2

←−
h3

←−
hJ

Figure 3: Concatenate forward and backward hidden states to obtain the
representation for each word.

Gaurav Kumar Neural Machine Translation 03/03/2015

26Joint alignment and translation : Decoder

ti−1 ti

ei−1 ei

−→
h1

−→
h2

−→
h3

−→
hJ

f1 f2 f3 fJ

ai,1 ai,2 ai,3 ai,4

←−
h1

←−
h2

←−
h3

←−
hJ

Figure 4: Putting it all together : The annotations created by concatenating the
hidden states are used by the decoder

Gaurav Kumar Neural Machine Translation 03/03/2015

27

Conclusion

Gaurav Kumar Neural Machine Translation 03/03/2015

28How well do these models perform ?

• NNJM uses source side context along with the target side.

– +3.0 BLEU gain over a state of-the-art S2T system with NNLM.
– +6.0 BLEU gain over a simple hierarchical system with regular n-gram LMs.

• BRAE adds additional features which describe phrasal similarity to an existing
translation model.

– Reduced loss in translation quality while pruning compared to Significance
pruning.

• The joint-alignment-translation RNN describes one self-sufficient system for
alignment and translation.

– Results comparable with current phrase based systems.

Gaurav Kumar Neural Machine Translation 03/03/2015

29Acknowledgments

• Philipp Koehn for the slide template.

• Yuan Cao, Sanjeev Khudanpur and Philipp Koehn for feedback on content and
structure.

• The MT@JHU reading group for the ideas.

Gaurav Kumar Neural Machine Translation 03/03/2015

