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Universal Approximators

. Neuqal networks can approximate
any[ ' function.

e Capacity

e Layers
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[1] K. Hornik, M. Stinchcombe, and H. White. 1989. Multilayer feedforward networks are universal approximators.
Neural Netw. 2, 5 (July 1989) : proved this for a specific class of functions.



Universal Approximators

« We will focus on two important
aspects of training:

* |deal properties of parameters
during training

e (Generalization error
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e QOther things to consider:
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* Hyper-parameter optimization
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Choice of model, loss functions
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e Learning rates (Use Adadelta or
Adam)
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Properties of Parameters

* Responsive to activation functions

* Numerically stable



Activation Saturation

10} e 10 F

3"' HI—

ﬂ\.-',,' (5]

F" -

A 3}

2k 2
) 1 ~ Y 1 1
et J0 =5 5 0

Sigmoid Relu



Initialization of weight
matrices

* Are you using a non-recurrent NN 7
* Use the Xavier initialization

* (use small values to initialize bias vectors)

Glorot & Bengio (2010), He et.al (2015)



Initialization of weight
matrices (Xavier, He)
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Initialization of weight
matrices

* Are you using a recurrent NN 7
o With LSTMs : Use the Saxe initialization

* All weight matrices initialized to be
orthonormal (Gaussian noise -> SVD)

o Without LSTMS

* All weight matrices initialized to identity

Saxe et al, 2014,



Watch your input

* A high variance in input features may cause
saturation very early

e Mean subtraction : Same mean across all
features

e Normalization : Same scale across all features



Numerical stapility

* Floating point precision causes values to overflow
or underflow

exp(x;)
Z?:1 exp(z;)

softmax(x); =

* |nstead, compute

softmax(z) where z = & — max; ;



Numerical stapility

L=—Aog(p)—(1—blog(1—p)

* Cross Entropy Loss

 Probabilities close to O for the correct label will
cause underflow

* Use range clipping. All values between
0.000001 and 0.999999.



Generalization
Preventing Overfitting



Regularization

* L2 regularization %H‘WZ

* L1 regularization Allw ||l

* Gradient clipping (max norm constraints)



Regularization

* Perform layer-wise regularization

» After computing the activated value of each
layer, normalize with the L2 norm.

* No regularization hyper-parameters

* No waiting till back-propagation for weight
penalties to flow in
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(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15



Dropout

w PW
Present with Always
probability p present

(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.



Dropout

* |Interpret as regularization

* Interpret as training an ensemble of thinned
networks



