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1N-Gram Backoff Language Model

• Previously, we approximated

p(W ) = p(w1, w2, ..., wn)

• ... by applying the chain rule

p(W ) =
∑
i

p(wi|w1, ..., wi−1)

• ... and limiting the history (Markov order)

p(wi|w1, ..., wi−1) ' p(wi|wi−4, wi−3, wi−2, wi−1)

• Each p(wi|wi−4, wi−3, wi−2, wi−1) may not have enough statistics to estimate

→ we back off to p(wi|wi−3, wi−2, wi−1), p(wi|wi−2, wi−1), etc., all the way to p(wi)

– exact details of backing off get complicated — ”interpolated Kneser-Ney”
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2Refinements

• A whole family of back-off schemes

• Skip-n gram models that may back off to p(wi|wi−2)

• Class-based models p(C(wi)|C(wi−4), C(wi−3), C(wi−2), C(wi−1))

⇒ We are wrestling here with

– using as much relevant evidence as possible

– pooling evidence between words
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3First Sketch
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4Representing Words

• Words are represented with a one-hot vector, e.g.,

– dog = (0,0,0,0,1,0,0,0,0,....)
– cat = (0,0,0,0,0,0,0,1,0,....)
– eat = (0,1,0,0,0,0,0,0,0,....)

• That’s a large vector!

• Remedies

– limit to, say, 20,000 most frequent words, rest are OTHER

– place words in
√
n classes, so each word is represented by

∗ 1 class label
∗ 1 word in class label

– splitting rare words into subwords

– character-based models
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5

word embeddings
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6Add an Embedding Layer
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• Map each word first into a lower-dimensional real-valued space

• Shared weight matrix E
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7Details (Bengio et al., 2003)

• Add direct connections from embedding layer to output layer

• Activation functions

– input→embedding: none

– embedding→hidden: tanh

– hidden→output: softmax

• Training

– loop through the entire corpus

– update between predicted probabilities and 1-hot vector for output word
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8Word Embeddings

C

Word Embedding

• By-product: embedding of word into continuous space

• Similar contexts→ similar embedding

• Recall: distributional semantics
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9Word Embeddings
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10Word Embeddings
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11Are Word Embeddings Magic?

• Morphosyntactic regularities (Mikolov et al., 2013)

– adjectives base form vs. comparative, e.g., good, better
– nouns singular vs. plural, e.g., year, years
– verbs present tense vs. past tense, e.g., see, saw

• Semantic regularities

– clothing is to shirt as dish is to bowl
– evaluated on human judgment data of semantic similarities
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12

recurrent neural networks
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13Recurrent Neural Networks
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• Start: predict second word from first

• Mystery layer with nodes all with value 1
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14Recurrent Neural Networks
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15Recurrent Neural Networks
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16Training
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• Process first word

• Update weights with back-propagation
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17Training
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• Process second word

• Update weights with back-propagation

• And so on...

• But: no feedback to previous history
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18Back-Propagation Through Time
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• Unfold the graph for the entire sentence

• After processing the entire sentence,
update through the unfolded recurrent neural network
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19

long short term memory
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20Vanishing Gradients

• Error is propagated to previous steps

• Updates consider

– prediction at that time step
– impact on future time steps

• Vanishing gradient: propagated error disappears

Philipp Koehn Machine Translation: Neural Networks 26 September 2024



21Recent vs. Early History

• Hidden layer plays double duty

– memory of the network
– continuous space representation used to predict output words

• Sometimes only recent context important

After much economic progress over the years, the country→ has

• Sometimes much earlier context important

The country which has made much economic progress over the years still→ has
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22Long Short Term Memory (LSTM)

• Design quite elaborate, although not very complicated to use

• Basic building block: LSTM cell

– similar to a node in a hidden layer
– but: has a explicit memory state

• Output and memory state change depends on gates

– input gate: how much new input changes memory state
– forget gate: how much of prior memory state is retained
– output gate: how strongly memory state is passed on to next layer.

• Gates can be not just be open (1) and closed (0), but slightly ajar (e.g., 0.2)
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23LSTM Cell
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24LSTM Cell (Math)

• Memory and output values at time step t

memoryt = gateinput × inputt + gateforget ×memoryt−1

outputt = gateoutput ×memoryt

• Hidden node value ht passed on to next layer applies activation function f

ht = f(outputt)

• Input computed as input to recurrent neural network node

– given node values for prior layer ~xt = (xt
1, ..., x

t
X)

– given values for hidden layer from previous time step ~ht−1 = (ht−1
1 , ..., ht−1

H )
– input value is combination of matrix multiplication with weights wx and wh

and activation function g

inputt = g

(
X∑
i=1

wx
i x

t
i +

H∑
i=1

wh
i h

t−1
i

)
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25Values for Gates

• Gates are very important

• How do we compute their value?

→with a neural network layer!

• For each gate a ∈ (input, forget, output)

– weight matrix W xa to consider node values in previous layer ~xt

– weight matrix Wha to consider hidden layer ~ht−1 at previous time step
– weight matrix Wma to consider memory at previous time step ~memoryt−1

– activation function h

gatea = h

(
X∑
i=1

wxa
i xt

i +

H∑
i=1

wha
i ht−1

i +

H∑
i=1

wma
i memoryt−1

i

)
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26Training

• LSTM are trained the same way as recurrent neural networks

• Back-propagation through time

• This looks all very complex, but:

– all the operations are still based on
∗ matrix multiplications
∗ differentiable activation functions

→ we can compute gradients for objective function with respect to all parameters

→ we can compute update functions
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27What is the Point?

(from Tran, Bisazza, Monz, 2016)

• Each node has memory memoryi independent from current output hi

• Memory may be carried through unchanged (gateiinput = 0, gateimemory = 1)

⇒ can remember important features over long time span

(capture long distance dependencies)
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28Visualizing Individual Cells

Karpathy et al. (2015): ”Visualizing and Understanding Recurrent Networks”
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29Visualizing Individual Cells
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30Gated Recurrent Unit (GRU)
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reset gate  
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31Gated Recurrent Unit (Math)

• Two Gates

updatet = g(Wupdate inputt + Uupdate statet−1 + biasupdate)

resett = g(Wreset inputt + Ureset statet−1 + biasreset)

• Combination of input and previous state
(similar to traditional recurrent neural network)

combinationt = f(W inputt + U(resett ◦ statet−1))

• Interpolation with previous state

statet =(1− updatet) ◦ statet−1 +

updatet ◦ combinationt) + bias
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32

deeper models
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33Deep Learning?
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• Not much deep learning so far

• Between prediction from input to output: only 1 hidden layer

• How about more hidden layers?
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34Deep Models
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35

questions?
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