Phrase-Based Models

Philipp Koehn

9 September 2025

Motivation

- Word-Based Models translate *words* as atomic units
- Phrase-Based Models translate *phrases* as atomic units
- Advantages:
 - many-to-many translation can handle non-compositional phrases
 - use of local context in translation
 - the more data, the longer phrases can be learned
- "Standard Model", used by Google Translate and others until about 2017

Phrase-Based Model

- Foreign input is segmented in phrases
- Each phrase is translated into English
- Phrases are reordered

Phrase Translation Table

- Main knowledge source: table with phrase translations and their probabilities
- Example: phrase translations for natuerlich

Translation	Probability $\phi(ar{e} ar{f})$
of course	0.5
naturally	0.3
of course,	0.15
, of course ,	0.05

Real Example

• Phrase translations for den Vorschlag learned from the Europarl corpus:

English	$\phi(ar{e} ar{f})$	English	$\phi(ar{e} ar{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159	•••	•••

- lexical variation (proposal vs suggestions)
- morphological variation (proposal vs proposals)
- included function words (the, a, ...)
- noise (it)

Linguistic Phrases?

- Model is not limited to linguistic phrases (noun phrases, verb phrases, prepositional phrases, ...)
- Example non-linguistic phrase pair

spass am \rightarrow fun with the

• Prior noun often helps with translation of preposition

• Experiments show that limitation to linguistic phrases hurts quality

modeling

Noisy Channel Model

- We would like to integrate a language model
- Bayes rule

$$argmax_{e} p(\mathbf{e}|\mathbf{f}) = argmax_{e} \frac{p(\mathbf{f}|\mathbf{e}) p(\mathbf{e})}{p(\mathbf{f})}$$
$$= argmax_{e} p(\mathbf{f}|\mathbf{e}) p(\mathbf{e})$$

Noisy Channel Model

- Applying Bayes rule also called noisy channel model
 - we observe a distorted message R (here: a foreign string f)
 - we have a model on how the message is distorted (here: translation model)
 - we have a model on what messages are probably (here: language model)
 - we want to recover the original message S (here: an English string e)

More Detail

• Bayes rule

$$\mathbf{e}_{best} = \operatorname{argmax}_{\mathbf{e}} p(\mathbf{e}|\mathbf{f})$$

$$= \operatorname{argmax}_{\mathbf{e}} p(\mathbf{f}|\mathbf{e}) p_{LM}(\mathbf{e})$$

- translation model $p(\mathbf{f}|\mathbf{e})$
- language model $p_{LM}(\mathbf{e})$
- Decomposition of the translation model

$$p(\bar{f}_1^I | \bar{e}_1^I) = \prod_{i=1}^I \phi(\bar{f}_i | \bar{e}_i) \ d(start_i - end_{i-1} - 1)$$

- phrase translation probability ϕ
- reordering probability d

Distance-Based Reordering

phrase	translates	movement	distance
1	1–3	start at beginning	0
2	6	skip over 4–5	+2
3	4–5	move back over 4–6	-3
$\overline{4}$	7	skip over 6	+1

Scoring function: $d(x) = \alpha^{|x|}$ — exponential with distance

training

Learning a Phrase Translation Table

• Task: learn the model from a parallel corpus

- Three stages:
 - word alignment: using IBM models or other method
 - extraction of phrase pairs
 - scoring phrase pairs

Word Alignment

Extracting Phrase Pairs

extract phrase pair consistent with word alignment:

assumes that / geht davon aus , dass

Consistent

All words of the phrase pair have to align to each other.

Consistent

Phrase pair (\bar{e}, \bar{f}) consistent with an alignment A, if all words $f_1, ..., f_n$ in \bar{f} that have alignment points in A have these with words $e_1, ..., e_n$ in \bar{e} and vice versa:

 (\bar{e},\bar{f}) consistent with $A\Leftrightarrow$

$$\forall e_i \in \bar{e} : (e_i, f_j) \in A \to f_j \in \bar{f}$$

and
$$\forall f_j \in \bar{f}: (e_i, f_j) \in A \rightarrow e_i \in \bar{e}$$

AND
$$\exists e_i \in \bar{e}, f_j \in \bar{f}: (e_i, f_j) \in A$$

Phrase Pair Extraction

Smallest phrase pairs:

```
michael — michael
assumes — geht davon aus / geht davon aus ,
that — dass / , dass
he — er
will stay — bleibt
in the — im
house — haus
```

unaligned words (here: German comma) lead to multiple translations

Larger Phrase Pairs

michael assumes — michael geht davon aus / michael geht davon aus , assumes that — geht davon aus , dass ; assumes that he — geht davon aus , dass er that he — dass er / , dass er ; in the house — im haus michael assumes that — michael geht davon aus , dass michael assumes that he — michael geht davon aus , dass er michael assumes that he will stay in the house — michael geht davon aus , dass er im haus bleibt assumes that he will stay in the house — geht davon aus , dass er im haus bleibt that he will stay in the house — dass er im haus bleibt ; dass er im haus bleibt , he will stay in the house — er im haus bleibt ; will stay in the house — im haus bleibt

Scoring Phrase Translations

- Phrase pair extraction: collect all phrase pairs from the data
- Phrase pair scoring: assign probabilities to phrase translations
- Score by relative frequency:

$$\phi(\bar{f}|\bar{e}) = \frac{\operatorname{count}(\bar{e}, \bar{f})}{\sum_{\bar{f}_i} \operatorname{count}(\bar{e}, \bar{f}_i)}$$

EM Training of the Phrase Model

- We presented a heuristic set-up to build phrase translation table (word alignment, phrase extraction, phrase scoring)
- Alternative: align phrase pairs directly with EM algorithm
 - initialization: uniform model, all $\phi(\bar{e}, \bar{f})$ are the same
 - expectation step:
 - * estimate likelihood of all possible phrase alignments for all sentence pairs
 - maximization step:
 - * collect counts for phrase pairs (\bar{e}, \bar{f}) , weighted by alignment probability
 - * update phrase translation probabilties $p(\bar{e}, \bar{f})$
- However: method easily overfits (learns very large phrase pairs, spanning entire sentences)

Size of the Phrase Table

- Phrase translation table typically bigger than corpus ... even with limits on phrase lengths (e.g., max 7 words)
- → Too big to store in memory?
 - Solution for training
 - extract to disk, sort, construct for one source phrase at a time!
 - Solutions for decoding
 - on-disk data structures with index for quick look-ups
 - suffix arrays to create phrase pairs on demand

advanced modeling

Weighted Model

- Described standard model consists of three sub-models
 - phrase translation model $\phi(\bar{f}|\bar{e})$
 - reordering model d
 - language model $p_{LM}(e)$

$$e_{\text{best}} = \operatorname{argmax}_{e} \prod_{i=1}^{I} \phi(\bar{f}_{i}|\bar{e}_{i}) \ d(start_{i} - end_{i-1} - 1) \ \prod_{i=1}^{|\mathbf{e}|} p_{LM}(e_{i}|e_{1}...e_{i-1})$$

- Some sub-models may be more important than others
- Add weights λ_{ϕ} , λ_{d} , λ_{LM}

$$e_{\text{best}} = \operatorname{argmax}_{e} \prod_{i=1}^{I} \phi(\bar{f}_{i} | \bar{e}_{i})^{\lambda_{\phi}} d(start_{i} - end_{i-1} - 1)^{\lambda_{d}} \prod_{i=1}^{|\mathbf{e}|} p_{LM}(e_{i} | e_{1} ... e_{i-1})^{\lambda_{LM}}$$

Log-Linear Model

• Such a weighted model is a log-linear model:

$$p(x) = \exp \sum_{i=1}^{n} \lambda_i h_i(x)$$

- Our feature functions
 - number of feature function n=3
 - random variable x = (e, f, start, end)
 - feature function $h_1 = \log \phi$
 - feature function $h_2 = \log d$
 - feature function $h_3 = \log p_{LM}$

Weighted Model as Log-Linear Model

$$p(e, a|f) = \exp(\lambda_{\phi} \sum_{i=1}^{I} \log \phi(\bar{f}_{i}|\bar{e}_{i}) + \lambda_{d} \sum_{i=1}^{I} \log d(a_{i} - b_{i-1} - 1) + \lambda_{LM} \sum_{i=1}^{|e|} \log p_{LM}(e_{i}|e_{1}...e_{i-1}))$$

More Feature Functions

- Bidirectional alignment probabilities: $\phi(\bar{e}|\bar{f})$ and $\phi(\bar{f}|\bar{e})$
- Rare phrase pairs have unreliable phrase translation probability estimates
 - → lexical weighting with word translation probabilities

$$\operatorname{lex}(\bar{e}|\bar{f},a) = \prod_{i=1}^{\operatorname{length}(\bar{e})} \frac{1}{|\{j|(i,j)\in a\}|} \sum_{\forall (i,j)\in a} w(e_i|f_j)$$

More Feature Functions

- Language model has a bias towards short translations
 - \rightarrow word count: $wc(e) = \log |\mathbf{e}|^{\omega}$
- We may prefer finer or coarser segmentation
 - \rightarrow phrase count $pc(e) = \log |I|^{\rho}$
- Multiple language models
- Multiple translation models
- Other knowledge sources

reordering

Lexicalized Reordering

- Distance-based reordering model is weak
 - → learn reordering preference for each phrase pair

• Three orientations types: (m) monotone, (s) swap, (d) discontinuous

orientation $\in \{m, s, d\}$ $p_o(\text{orientation}|\bar{f}, \bar{e})$

Learning Lexicalized Reordering

- Collect orientation information during phrase pair extraction
 - if word alignment point to the top left exists → monotone
 - if a word alignment point to the top right exists → swap
 - if neither a word alignment point to top left nor to the top right exists
 - \rightarrow neither monotone nor swap \rightarrow **discontinuous**

Learning Lexicalized Reordering

• Estimation by relative frequency

$$p_o(\text{orientation}) = \frac{\sum_{\bar{f}} \sum_{\bar{e}} count(\text{orientation}, \bar{e}, \bar{f})}{\sum_{o} \sum_{\bar{f}} \sum_{\bar{e}} count(o, \bar{e}, \bar{f})}$$

• Smoothing with unlexicalized orientation model p(orientation) to avoid zero probabilities for unseen orientations

$$p_o(\text{orientation}|\bar{f},\bar{e}) = \frac{\sigma \ p(\text{orientation}) + count(\text{orientation},\bar{e},\bar{f})}{\sigma + \sum_o count(o,\bar{e},\bar{f})}$$

translation process

Decoding

• We have a mathematical model for translation

$$p(\mathbf{e}|\mathbf{f})$$

• Task of decoding: find the translation **e**_{best} with highest probability

$$e_{best} = argmax_e p(e|f)$$

- Two types of error
 - the most probable translation is bad \rightarrow fix the model
 - search does not find the most probably translation \rightarrow fix the search
- Decoding is evaluated by search error, not quality of translations (although these are often correlated)

Translation Process

• Task: translate this sentence from German into English

er geht ja nicht nach hause

Translation Process

• Task: translate this sentence from German into English

• Pick phrase in input, translate

Translation Process

• Task: translate this sentence from German into English

- Pick phrase in input, translate
 - it is allowed to pick words out of sequence reordering
 - phrases may have multiple words: many-to-many translation

Translation Process

• Task: translate this sentence from German into English

• Pick phrase in input, translate

Translation Process

• Task: translate this sentence from German into English

• Pick phrase in input, translate

Computing Translation Probability

• Probabilistic model for phrase-based translation:

$$\mathbf{e_{best}} = \mathrm{argmax_e} \ \prod_{i=1}^{I} \phi(\bar{f_i}|\bar{e_i}) \ d(start_i - end_{i-1} - 1) \ p_{\mathrm{LM}}(\mathbf{e})$$

- Score is computed incrementally for each partial hypothesis
- Components

Phrase translation Picking phrase \bar{f}_i to be translated as a phrase \bar{e}_i

 \rightarrow look up score $\phi(\bar{f}_i|\bar{e}_i)$ from phrase translation table

Reordering Previous phrase ended in end_{i-1} , current phrase starts at $start_i$

 \rightarrow compute $d(start_i - end_{i-1} - 1)$

Language model For n-gram model, need to keep track of last n-1 words

 \rightarrow compute score $p_{\mathsf{LM}}(w_i|w_{i-(n-1)},...,w_{i-1})$ for added words w_i

decoding process

Translation Options

- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

Translation Options

- The machine translation decoder does not know the right answer
 - picking the right translation options
 - arranging them in the right order
- → Search problem solved by heuristic beam search

Decoding: Precompute Translation Options 43

er	geht	ja 	nicht	nach ———	hause ———

consult phrase translation table for all input phrases

Decoding: Start with Initial Hypothesis

er 	geht	ja 	nicht	nach ———	hause ———

initial hypothesis: no input words covered, no output produced

Decoding: Hypothesis Expansion

pick any translation option, create new hypothesis

Decoding: Hypothesis Expansion

create hypotheses for all other translation options

Decoding: Hypothesis Expansion

also create hypotheses from created partial hypothesis

Decoding: Find Best Path

backtrack from highest scoring complete hypothesis

dynamic programming

Computational Complexity

- The suggested process creates exponential number of hypothesis
- Machine translation decoding is NP-complete
- Reduction of search space:
 - recombination (risk-free)
 - pruning (risky)

Recombination

- Two hypothesis paths lead to two matching hypotheses
 - same foreign words translated
 - same English words in the output

Worse hypothesis is dropped

Recombination

- Two hypothesis paths lead to hypotheses indistinguishable in subsequent search
 - same foreign words translated
 - same last two English words in output (assuming trigram language model)
 - same last foreign word translated

Worse hypothesis is dropped

Restrictions on Recombination

- **Translation model:** Phrase translation independent from each other
 - → no restriction to hypothesis recombination
- Language model: Last n-1 words used as history in n-gram language model
 - \rightarrow recombined hypotheses must match in their last n-1 words
- **Reordering model:** Distance-based reordering model based on distance to end position of previous input phrase
 - → recombined hypotheses must have that same end position
- Other feature function may introduce additional restrictions

pruning

Pruning

• Recombination reduces search space, but not enough (we still have a NP complete problem on our hands)

- Pruning: remove bad hypotheses early
 - put comparable hypothesis into stacks
 (hypotheses that have translated same number of input words)
 - limit number of hypotheses in each stack

Stacks

- Hypothesis expansion in a stack decoder
 - translation option is applied to hypothesis
 - new hypothesis is dropped into a stack further down

Stack Decoding Algorithm


```
1: place empty hypothesis into stack 0
2: for all stacks 0...n - 1 do
     for all hypotheses in stack do
3:
        for all translation options do
4:
          if applicable then
5:
            create new hypothesis
6:
            place in stack
            recombine with existing hypothesis if possible
8:
            prune stack if too big
9:
          end if
10:
        end for
11:
     end for
12:
13: end for
```

Pruning

- Pruning strategies
 - histogram pruning: keep at most k hypotheses in each stack
 - stack pruning: keep hypothesis with score $\alpha \times$ best score ($\alpha < 1$)
- Computational time complexity of decoding with histogram pruning

 $O(\max \operatorname{stack} \operatorname{size} \times \operatorname{translation} \operatorname{options} \times \operatorname{sentence} \operatorname{length})$

• Number of translation options is linear with sentence length, hence:

 $O(\max \operatorname{stack} \operatorname{size} \times \operatorname{sentence} \operatorname{length}^2)$

Quadratic complexity

Reordering Limits

- Limiting reordering to maximum reordering distance
- Typical reordering distance 5–8 words
 - depending on language pair
 - larger reordering limit hurts translation quality
- Reduces complexity to linear

 $O(\max \text{ stack size} \times \text{ sentence length})$

• Speed / quality trade-off by setting maximum stack size

future cost estimation

Translating the Easy Part First?

the tourism initiative addresses this for the first time

both hypotheses translate 3 words worse hypothesis has better score

Estimating Future Cost

- Future cost estimate: how expensive is translation of rest of sentence?
- Optimistic: choose cheapest translation options
- Cost for each translation option
 - translation model: cost known
 - language model: output words known, but not context
 - \rightarrow estimate without context
 - reordering model: unknown, ignored for future cost estimation

Cost Estimates from Translation Options

the tourism initiative addresses this for the first time

cost of cheapest translation options for each input span (log-probabilities)

Cost Estimates for all Spans

Compute cost estimate for all contiguous spans by combining cheapest options

first		future cost estimate for n words (from first)							
word	1	2	3	4	5	6	7	8	9
the	-1.0	-3.0	-4.5	-6.9	-8.3	-9.3	-9.6	-10.6	-10.6
tourism	-2.0	-3.5	-5.9	-7.3	-8.3	-8.6	-9.6	-9.6	
initiative	-1.5	-3.9	-5.3	-6.3	-6.6	-7.6	-7.6		•
addresses	-2.4	-3.8	-4.8	<i>-</i> 5.1	-6.1	-6.1			
this	-1.4	-2.4	-2.7	-3.7	-3.7		•		
for	-1.0	-1.3	-2.3	-2.3		-			
the	-1.0	-2.2	-2.3						
first	-1.9	-2.4		-					
time	-1.6		•						

- Function words cheaper (the: -1.0) than content words (tourism -2.0)
- Common phrases cheaper (for the first time: -2.3) than unusual ones (tourism initiative addresses: -5.9)

Combining Score and Future Cost

- Hypothesis score and future cost estimate are combined for pruning
 - left hypothesis starts with hard part: the tourism initiative score: -5.88, future cost: -6.1 \rightarrow total cost -11.98
 - middle hypothesis starts with easiest part: the first time score: -4.11, future cost: -9.3 → total cost -13.41
 - right hypothesis picks easy parts: this for ... time score: -4.86, future cost: -9.1 \rightarrow total cost -13.96

cube pruning

Stack Decoding Algorithm

Exhaustive matching of hypotheses to applicable translations options
 → too much computation

```
1: place empty hypothesis into stack 0
2: for all stacks 0...n - 1 do
     for all hypotheses in stack do
3:
        for all translation options do
4:
          if applicable then
5:
            create new hypothesis
6:
            place in stack
7:
            recombine with existing hypothesis if possible
            prune stack if too big
9:
          end if
10:
        end for
11:
     end for
12:
13: end for
```

Group Hypotheses and Options

- Group hypotheses by coverage vector
 - $\blacksquare \blacksquare \blacksquare \square \square \square$
 - **-** ■ □ □ □
 - _ | | | | | | | | |
 - **—** ...
- Group translation options by span

 - _ _ _ _ _ _ _ _ _ _ _ _
 - **–** ...
- ⇒ Loop over groups, check for applicability once for each pair of groups (not much gained so far)

All Hypotheses, All Options

- Example: group with 6 hypotheses, group with 5 translation options
- Should we really create all 6×5 of them?

Rank by Score

he does not -3.2 he just does -3.5 it does not -4.1 he just does not -4.3 he is not -4.7

- Rank hypotheses by score so far
- Rank translation options by score estimate

Expected Score of New Hypothesis

-1.0 go -1.2 walk -1.7 are -2.1 is

he does not -3.2 he just does -3.5

it does not -4.1

he just does not -4.3

he is not -4.7

-4.2	-4.4	-4.6	-4.9	-5.3
-4.5	-4.7	-4.9	-5.2	-5.6
-5.1	-5.3	-5.5	-5.8	-6.2
-5.3	-5.5	-5.7	-6.0	-6.4
-5.7	-5.9	-6.1	-6.4	-6.8
-6.1	-6.3	-6.5	-6.8	-7.2

- Expected score: hypothesis score + translation option score
- Real score will be different, since language model score depends on context

Only Compute Half

-1.0 go -1.2 walk -1.4 goes -1.7 are -2.1 is

he does not -3.2 he just does -3.5

it does not -4.1

he just does not -4.3

he is not -4.7

-4.2	-4.4	-4.6	-4.9	-5.3
-4.5	-4.7	-4.9	-5.2	-5.6
-5.1	-5.3	-5.5	-5.8	-6.2
-5.3	-5.5	-5.7	-6.0	-6.4
-5.7	-5.9	-6.1	-6.4	-6.8
-6.1	-6.3	-6.5	-6.8	-7.2

- If we want to save computational cost, we could decide to only compute some
- One way to do this: based on expected score

Cube Pruning

1.0 go
-1.2 walk
-1.4 goes
-1.7 are
-2.1 is

he does not -3.2

he just does -3.5

it does not -4.1

he just does not -4.3

he is not -4.7

-3.9	-4.4	-4.6	-4.9	-5.3
-4.5	-4.7	-4.9	-5.2	-5.6
-5.1	-5.3	-5.5	-5.8	-6.2
-5.3	-5.5	-5.7	-6.0	-6.4
-5.7	-5.9	-6.1	-6.4	-6.8
-6.1	-6.3	-6.5	-6.8	-7.2

- Start with best hypothesis, best translation option
- Create new hypothesis (actual score becomes available)

Cube Pruning (2)

he does not -3.2

he just does -3.5

it does not -4.1

he just does not -4.3

he is not -4.7

-3.9	-4.1	-4.6	-4.9	-5.3
-4.3	-4.7	-4.9	-5.2	-5.6
-5.1	-5.3	-5.5	-5.8	-6.2
-5.3	-5.5	-5.7	-6.0	-6.4
-5.7	-5.9	-6.1	-6.4	-6.8
-6.1	-6.3	-6.5	-6.8	-7.2

- Commit it to the stack
- Create its neighbors

Cube Pruning (3)

he does not -3.2

he just does -3.5

it does not -4.1

he just does not -4.3

he is not -4.7

-3.9	-4.1	-4.7	-4.9	-5.3
-4.3	-4.4	-4.9	-5.2	-5.6
-5.1	-5.3	-5.5	-5.8	-6.2
-5.3	-5.5	-5.7	-6.0	-6.4
-5.7	-5.9	-6.1	-6.4	-6.8
-6.1	-6.3	-6.5	-6.8	-7.2

- Commit best neighbor to the stack
- Create its neighbors in turn

Cube Pruning (4)

-1.0 go -1.2 walk -1.4 goes -1.7 are -2.1 is

he does not -3.2 he just does -3.5

it does not -4.1

he just does not -4.3

he is not -4.7

-3.9	-4.1	-4.7	-4.9	-5.3
-4.3	-4.4	-4.9	-5.2	-5.6
-4.0	-5.3	-5.5	-5.8	-6.2
-5.3	-5.5	-5.7	-6.0	-6.4
-5.7	-5.9	-6.1	-6.4	-6.8
-6.1	-6.3	-6.5	-6.8	-7.2

- Keep doing this for a specific number of hypothesis
- Different hypothesis / translation options groups compete as well

questions?