Speech Translation

Philipp Koehn
based on slides from Xutai Ma

14 November 2023
What is Speech?

- Spectrogram: Loudness at different sound frequencies and time steps
- Typically segmented into, say, 50 frames per second (50Hz)

⇒ can be used in sequence models
What Makes Speech Hard?

- **Disfluent language**
 - Ungrammatical languages, restarts, repetitions
 - Pauses, filler words ("ah", "hm", "like"),
- **Noise**
 - background sounds, reverberation, etc.
 - cocktail party effect
- **Recording conditions**
 - sampling rate
 - which sound frequencies are filtered out
 - microphone placement, possibly multiple microphones
- **More variety**
 - different speakers
 - more spoken language varieties
 - tone, emotional content not captured in text
- **Less data** (also more privacy concerns about data)
Introduction

• What is speech translation?
 • Translate speech in source language to text / speech in target language
Introduction

Why/Where do we need speech translation?

- International conferences (e.g., UN, EU)
- Live video translation (e.g., YouTube, streaming)
- Personal translator (e.g., international travels)
 - Google translate (Conversation)
speech recognition
Background:
Speech Processing and Recognition

• Speech Processing
 • How to represent speech → feature extraction

• Automatic Speech Recognition (ASR)
 • Transcribe speech to text in one language
 • Seq2seq task, but input and output have the same order
Feature Extractions

• Short-Term Spectrum
 • (Mel-frequency cepstral coefficients) MFCC
• Convert speech samples to sequence of vectors
Automatic Speech Recognition

• Acoustic Model
 • Neural-based models

<table>
<thead>
<tr>
<th>Fully connect / recurrent layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooling layers</td>
</tr>
<tr>
<td>Convolutional layers</td>
</tr>
</tbody>
</table>
Automatic Speech Recognition

• Convolutional layers

Automatic Speech Recognition

• Seq2Seq model

Decoder with attention mechanism

Encoder

Recurrent layers
Pooling layers
Convolutional layers
Automatic Speech Recognition

Kaldi's code lives at https://github.com/kaldi-asr/kaldi. To checkout (i.e. clone in
the git terminology) the most recent changes, you can use this command:
git clone https://github.com/kaldi-asr/kaldi or follow the github link and click
"Download in zip" on the github page (right hand side of the web page)

To browse the model builds that are available (not many), please click on
models.

If you have any suggestion of how to improve the site, please contact me.

ESPnet: end-to-end speech processing toolkit

ESPnet is an end-to-end speech processing toolkit for speech recognition and end-to-end text-to-speech.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for
translation, summarization, language modeling and other text generation tasks.

We provide reference implementations of various sequence modeling papers:
speech translation
Cascaded Speech Translation

- Synchronize tokenization schemes
- Pass lattices between steps
- Main concern: error propagation

Input Audio → Speech Recognition → Dies ist ein Satz in einer fremden Sprache. → Machine Translation → This is a sentence in a foreign language. → Speech Synthesis → Output Audio
End-to-End Systems

Moving towards end-to-end systems:

Input Audio → Speech Recognition → Input Text → Machine Translation → Output Text → Speech Synthesis → Output Audio

Dies ist ein Satz in einer fremden Sprache.
This is a sentence in a foreign language.
Automatic Speech Recognition

Decoder with attention mechanism

Encoder

Recurrent layers
Pooling layers
Convolutional layers
End-to-End Speech Translation

Decoder with attention mechanism

- Recurrent layers
- Pooling layers
- Convolutional layers

Encoder
The Data Aspect

Moving towards end-to-end systems:

Dies ist ein Satz in einer fremden Sprache.
This is a sentence in a foreign language.
Data Augmentation

Dies ist ein Satz in einer fremden Sprache.
This is a sentence in a foreign language.
Pretraining Components

- Train components of the model separately
- Connect components
- Fine-tune on end-to-end data
speech tokens
Goal: Represent speech as a sequence of discrete tokens

Two Methods
- Semantic tokens: wav2vec-BERT
- Acoustic tokens: SpeechStream / SpeechStorm
Semantic and Acoustic Tokens

- Generating with semantic vs. acoustic tokens

<table>
<thead>
<tr>
<th></th>
<th>Acoustic</th>
<th>Semantic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstruction</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Phonetic discriminability</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

- Training model only on acoustic tokens creates “babbling”: no meaningful words
Speech Tokens by Vector Quantization

- Input: high dimensional vector corresponding to a speech frame
- K-Means Clustering
- Token is cluster ID
Wav2Vec-BERT

- Pre-trained model for speech, optimizing
 - masked language model loss on discrete tokens
 - contrastive loss: detect true vector from distractors (from same utterance)
 - also: codebook diversity loss (encourage uniform use of codes)

- Iteration between k-means clustering and retraining representations
SpeechStream

• A neural audio codec: goal is compression for transmitting less data

• Trained with reconstruction loss and discriminative training
Residual Vector Quantization

- Vector Quantization: K-Means Clustering (\(\rightarrow\) token is cluster ID)

- Subtract centroid from all data points

- Quantize all data points again (not hierarchical), rinse and repeat

(images from https://drscotthawley.github.io/blog/posts/2023-06-12-RVQ.html)
audiopalm (google)
AudioPaLM

- **Step 1**: Pretrained PaLM
- **Step 2**: Fine-Tuning on Speech Data (ASR, S2ST, S2TT, MT, TTS)
AudioPaLM Training

- Pre-trained PaLM

- Pre-trained Audio \rightarrow audio tokens (wav2vec-BERT)

- Extend embedding matrix with speech tokens
 - audio embeddings initialized randomly
 - train all parameters with text+speech data

- Decode audio tokens
 - autoregressive as in AudioLM
 - non-autoregressive as in SoundStorm
 - prepend with 3 seconds of audio of desired speaker
Presenting Task Data

- **Tasks**
 - ASR: audio \rightarrow text
 - AST (S2TT): audio \rightarrow translated text
 - S2ST: audio \rightarrow translated audio
 - MT: text \rightarrow translated text
 - TTS: text \rightarrow audio

- **Task label at beginning of input, including languages**
 e.g., [S2ST English French]
 - natural language prompts: no difference
 - naming language helpful for low resource languages
 - also combined labels: [ASR AST S2ST English French]
• Creating audio signal from semantic audio tokens (from wav2vec-BERT)

• Predict acoustic audio tokens
 – 50 Hertz (code rate 20 per second)
 – 12 quantization levels
 – 1024 vocabulary (clusters) per level

• Prepend speaker-specific audio tokens

• Predict waveforms with conformers & all that good stuff

• Non-autoregressive decoding
seamless4mt (meta)
Pretrained Models

- **w2v-BERT 2.0**: speech tokenizer
- **NLLB**: multilingual text translation model
• Multi-task training: T2T, S2T, ASR

• Additional training objective:
 For (speech, transcription, translation) triples T2T and S2T should agree
Speech-to-Speech Training

![Diagram of Speech-to-Speech Training](image)
simultaneous speech translation
Simultaneous Speech Translation

• Start the translation before reading all the input speech

I am going to talk today about energy and climate.

Heute spreche ich zu Ihnen über Energie und Klima.
Simultaneous Speech Translation

Input: I am going to talk today about energy and climate.

Output: Heute spreche ich zu Ihnen über Energie und Klima.
Simultaneous Translation Policies

- **Reinforcement learning** (Gu et al. 2017; Luo et al. 2017; Lawson et al. 2018)
 - Less stable learning process.

- **Fixed policy** (Cho and Esipova 2016; Ma et al. 2019a)
 - Weaker performance, for instance Wait-K (Ma et al. 2019a).

- **Monotonic attention** (Raffel et al., 2017; Arivazha-gan et al., 2019; Ma et al., 2020)
 - The State of the art for the task.
The lagging behind an oracle/perfect system
Thank You

questions?