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Quick Recap

Develop a statistical  model of translation that can be 
learned from data and used to predict the correct 

English translation of new Chinese sentences.



Quick Recap

•Minimally, our model must account for:

•Lexical ambiguity.

•One-to-many translation.

•Many-to-many translation.

•Untranslated words.

•Word reordering.



Quick Recap

•Oh, and it would probably be good to include:

•Fluent output.

•Adequate transfer of source language meaning.



Quick Recap

虽然  北  风  呼啸  ,  但  天空  依然  十分  清澈  。

However , the sky remained clear under the strong north wind .

Although north wind howls  ,    but     sky      still      very     clear     .
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联合国 安全 理事会 的 

五个 常任 理事 国都
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However , the sky remained clear 
under the strong north wind .
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For our purposes, a model will be
a probability distribution over sentence pairs.

NOTE ASSUMPTION
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 Why Probability?
•Access to techniques developed and proven over 

hundreds of years that work on many problems.

•In particular, techniques for learning and prediction.

•Allows us to answer questions:

•What is the best explanation of observed data?

•Given some partially observed data (e.g. an input 
sentence), what is the most likely complete data 
(e.g. a sentence pair)?

•Common sense in mathematical form!
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When an event consists of observations about more than
one variable, it is a joint probability.
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A probability distribution over a subset of variables is a 
marginal probability.
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The probability of a variable under the condition that the 
other variables are fixed is the conditional probability.
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marginal probability = its conditional probability



Probabilistic Primer

1
42
1
42
1
42
1
42
1
42

1
42

1
42
1
42
1
42
1
42

1
42
1
42

1
42
1
42
1
42

1
42
1
42
1
42

1
42
1
42

1
42
1
42
1
42
1
42

1
42

1
42
1
42
1
42
1
42
1
42

2
42

2
42

2
42

2
42

2
42

2
42

p(B = 1|A = 1) =
2
7
�= 1

6
= p(B = 1)

Under this distribution, B is not conditionally 
independent of A!
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Knowing value of A does not change distribution over B. 
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Conditional independence means that the distributions
that characterize your model are simpler.
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It is easy to obtain the joint probability.
p(A = 1, B = 1) = p(A = 1) · p(B = 1) =

1
6

· 1
6

=
1
36
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Caveat: if your data are not conditionally independent, 
the model will be a poor fit!
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We can still represent the joint distribution as a product 
of other distributions. 
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p(B|A) =
p(B) · p(A|B)

p(A)
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p(B|A) =
p(B) · p(A|B)

p(A)Bayes’ Rule

prior likelihoodposterior



...But the probability that an event has 
happened is the same as the probability I 

have to guess right if I guess it has 
happened.  Wherefore the following 

proposition is evident: If there be two 
subsequent events, the probability of the 
2d b/N and the probability both together 
P/N, and it being 1st discovered that the 

2d event has also happened, the 
probability I am right is P/b.

Thomas Bayes
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have to guess right if I guess it has 
happened.  Wherefore the following 

proposition is evident: If there be two 
subsequent events, the probability of the 
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2d event has also happened, the 
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Thomas Bayes

(image by 
Chris Dyer)
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However, the sky remained clear under the 
strong north wind .
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However, the sky remained clear under the 
strong north wind .

Bayes’ Rule
p(English)

虽然  北  风  呼啸  ,  但  天空  依然  十分  清澈  。

p(Chinese|English)



When I look at an article 
in Russian, I say: “This 

is really written in 
English, but it has been 
coded in some strange 
symbols. I will now 
proceed to decode.”

Warren Weaver (1949)





Claude Shannon



p(English|Chinese) =

p(English) × p(Chinese|English)

p(Chinese)

likelihoodprior

normalization term (ensures we’re 
working with valid probabilities).

Bayes’ Rule



p(English|Chinese) =

p(English) × p(Chinese|English)

p(Chinese)

channel modelsignal model

normalization term (ensures we’re 
working with valid probabilities).

Noisy Channel



p(English|Chinese) =

p(English) × p(Chinese|English)

p(Chinese)

translation modellanguage model

normalization term (ensures we’re 
working with valid probabilities).

Machine Translation
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English
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× p(English)



English

p(Chinese|English)

× p(English)

∼ p(English|Chinese)



p(English|Chinese) =

p(English) × p(Chinese|English)

p(Chinese)

translation modellanguage model

normalization term 
(remember: probabilities must sum to 1).

Machine Translation



p(English|Chinese) ∼

p(English) × p(Chinese|English)

Machine Translation



p(English|Chinese) ∼

p(English) × p(Chinese|English)

Machine Translation

What is the probability of an English sentence? 



p(English|Chinese) ∼

p(English) × p(Chinese|English)

Machine Translation

What is the probability of an English sentence? 

What is the probability of a Chinese sentence, given a 
particular English sentence? 
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Language Models

Our language model must assign a probability 
to every possible English sentence.

Q: What should this model look like?

A: What is the dumbest thing you can think of?
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Language Models

Every sequence of English words receives a 
non-zero probability.

Problem 1: there are an infinite number of such 
sequences.

Problem 2: it would be hard to estimate.✘



Language Models

Idea: since the language model is a joint 
model over all words in a sentence, make

words depend on words earlier in the
sentence.



p(However|START )
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Language Models

A number between 0 and 1.



p(However|START )

Language Models

A number between 0 and 1.
�

x

p(x|START ) = 1



However

p(However|START )

Language Models



However ,

p(, |However)

Language Models



However , the

p(the|, )

Language Models



However , the sky

p(sky|the)

Language Models



However , the sky remained 

Language Models

p(remained|sky)



However , the sky remained clear

Language Models

p(clear|remained)



However , the sky remained clear ... wind .

Language Models

p(STOP |.)...



p(English) =

length(English)∏

i=1

p(wordi|wordi−1)

Language Models



p(English) =

length(English)∏

i=1

p(wordi|wordi−1)

Language Models

Note: the prior probability that word0=START is 1.
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This model explains every word in the English sentence.



p(English) =

length(English)∏

i=1

p(wordi|wordi−1)

Language Models

Note: the prior probability that word0=START is 1.

This model explains every word in the English sentence.
But it makes very strong conditional independence 

assumptions!



Question: where do these numbers come from?

Language Models

p(clear|remained)
p(sky|the)

p(remained|sky)



This is just a model that we can train on data.

Language Models

... in the night sky as it orbits earth ...
... said that the sky would fall if ...

... falling dollar , sky high interest rates ...
However , the sky remained clear ... 

p(remained|sky) = ???





p(heads)



p(heads) 1− p(heads)







p(heads) ?



p(data) = p(heads)7 × p(tails)3



p(data) = p(heads)7 × [1 − p(heads)]3



0 1

p(heads)

p(data)



0 1.7

p(heads)

p(data)



0 1.7

p(heads)

p(data)

can be derived analytically using Lagrange multipliers





• Optimization



p(remained|sky)

# of times I saw “sky remained”
# of times I saw “sky”

=

Language Models
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Language Models
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http://twitter.com/markov_bible
Jesus shall raise up children unto the way of the spices.

And some of them that do evil.
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Language Models
This is a pretty old trick.

http://twitter.com/markov_bible

But be careful! What if we haven’t seen some
word sequences?

Jesus shall raise up children unto the way of the spices.
And some of them that do evil.
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Language Models
This is a pretty old trick.

http://twitter.com/markov_bible

But be careful! What if we haven’t seen some
word sequences?

Won’t cover this too much, but keyword is
smoothing.

Jesus shall raise up children unto the way of the spices.
And some of them that do evil.

http://twitter.com/markov_bible
http://twitter.com/markov_bible


Language Models

•The language model does not depend in any way 
on parallel data.

•How much English data should we train it on?



Language Models
39

Monolingual data

Sources of monolingual data:

LDC Gigaword corpora: Chinese, Arabic, English (~1 billion words)

News corpora

The Web (>> 200 billion words)

Standard use of monolingual data:

Train trigram language model: p(wn|wn-2,wn-1)

Smoothing methods: linear interpolation, Kneser-Ney, …

How much data is needed?

Answer: MORE

40

More data is better data…

Impact on size of language model training data (in words) on quality of

Arabic-English statistical machine translation system (NIST test data)
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More data is better data…

Impact on size of language model training data (in words) on quality of

Arabic-English statistical machine translation system
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More data is better data…

Impact on size of language model training data (in words) on quality of

Arabic-English statistical machine translation system
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More data is better data…

Impact on size of language model training data (in words) on quality of

Arabic-English statistical machine translation system
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More data is better data…

Impact on size of language model training data (in words) on quality of

Arabic-English statistical machine translation system
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More data is better data…

Impact on size of language model training data (in words) on quality of

Arabic-English statistical machine translation system
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More data is better data…

Impact on size of language model training data (in words) on quality of

Arabic-English statistical machine translation system
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Popular Implementations

•SRI-LM -- www.speech.sri.com/projects/srilm

•KenLM -- http://kheafield.com/code/kenlm/

•BerkeleyLM -- http://code.google.com/p/
berkeleylm/

http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
http://kheafield.com/code/kenlm/
http://kheafield.com/code/kenlm/
http://code.google.com/p/berkeleylm/
http://code.google.com/p/berkeleylm/
http://code.google.com/p/berkeleylm/
http://code.google.com/p/berkeleylm/


Language Models

•There’s no data like more data.

•Language models serve a similar function in speech 
recognition, optical character recognition, and other 
probabilistic models of text data.



Translation Models

What is a good story about how a Chinese 
sentence came into being, given that we already 

have an English sentence?



Translation Models

What is a good story about how a Chinese 
sentence came into being, given that we already 

have an English sentence?

Note: in this example I’ll show you an English sentence, 
conditioned on a Chinese sentence.  Note that we can 

apply the same technique in either direction.
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However , the sky remained clear under the strong north wind .
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•Word translation probabilities.

•No real ordering model.

•This is left to the LM.
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p(however| )
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p(northern| )
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p(despite| )虽然

p(however| )

p(although| )
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虽然
# of times 虽然 occurs

# of times 虽然 aligns to Howeverp(however| ) =
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