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“It’s reasonably easy to determine what language
the data is in...”

e
» dreamt FORTRAN

linguist deduces that French = FORTRAN
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IBM Model 1: Pros

® Easy to understand.

® Model of lexical translation:
seems somewhat natural.

® EM objective is convex.

® Expectations can be
computed etficiently.
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EM for HMM

® Forward-backward algorithm: computation of
marginals.

® Good: still exact, polynomial-time.

® Bad: EM objective is no longer convex.

Use Model 1
to initialize
translation
parameters!
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Word-for-word independence assumptions do not hold!



Marginalize: sum all alignments containing the link
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We have to sum over exponentially many alignments!



Monte Carlo EM for IBM Model 4

Idea: approximate sums with a representative sample

Although north wind howls , but sky still very clear .
RO R, A2 RE KRR o mii .

v ‘
\\\\\-

_ / |

However, the sky remained clear under the strong north wind .




Monte Carlo EM for IBM Model 4

Idea: approximate sums with a representative sample

Although north wind howls , but sky still very clear .
BAR O ROPuR o, {2 REORAR o iR

\\

\0

|

However, the sky remained clear under the strong north wind .



Monte Carlo EM for IBM Model 4

Idea: approximate sums with a representative sample

Although north wind howls , but sky still very clear .
RO R, {2 REORAR o mi .

S
\\\\\-

% e l

However, the sky remained clear under the strong north wind .

|




Monte Carlo EM for IBM Model 4

Idea: approximate sums with a representative sample

Although north wind howls , but sky still very clear .
RO R, A2 REORKR o i

|

\\\.
_ / l

However, the sky remained clear under the strong north wind .




Monte Carlo EM for IBM Model 4

Idea: approximate sums with a representative sample

Although north wind howls , but sky still very clear .
RO R, A2 RE KRR o mi .

S
\\\\\-

_ / |

However, the sky remained clear under the strong north wind .

|




Monte Carlo EM for IBM Model 4

Idea: approximate sums with a representative sample

Although north wind howls , but sky still very clear .
RO R, A2 REORKR o i

|

\\\.
_ / l

However, the sky remained clear under the strong north wind .




Monte Carlo EM for IBM Model 4

Idea: approximate sums with a representative sample

Although north wind howls , but sky still very clear .
RO R, A2 RE KRR o mi .

S
\\\\\-

_ / |

However, the sky remained clear under the strong north wind .

|




Monte Carlo EM for IBM Model 4

Idea: approximate sums with a representative sample

Although north wind howls , but sky still very clear
2RO R R, 2 RE KRR T4 AR .

TR
L //\\/%\\

However, the sky remained clear under the strong north wind .

choose probabilistically among all possible alignments.



Monte Carlo EM for IBM Model 4

Idea: approximate sums with a representative sample
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IBM (1993): choose best among all possible alignments.



Monte Carlo EM for IBM Model 4

Idea: approximate sums with a representative sample
(similar to strategies for modern Bayesian inference)
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However, the sky remained clear under the strong north wind .

choose probabilistically among all possible alignments.
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Non-Learning Uses of Alignment

® Lexicography

® Cross-lingual information retrieval
® Computer-aided translation

® Comparative linguistics

® General natural language processing

® Parsers, taggers, etc. can be projected across
alignments



Alignment for Alignment’s Sake

® We might compute best alignment (or posteriors)
and treat as observed for future application.

® Suggests a natural (and common) strategy for
breaking asymmetry.

® Learn English = French model.
® Learn French — English model.
® Combine their predictions in some way.

® Further along these lines: alignment by agreement.
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What are some things this model doesn’t account for?
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the strong north wind

What are some things this model doesn’t account for?



Other IBM Models?

® Model 2: chooses alignment based on absolute word
position.

® Model 3: fertility, but no Markov depedency.
® Model 5: non-deficient estimation.

® Original purpose: initialize Model N parameters
from Model N-1 parameters.

® See also: Och & Ney, 2003, A Systematic Comparison
of Various Statistical Alignment Models
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The Mathematics of Statistical Machine
Translation: Parameter Estimation

Peter F. Brown" Stephen A. Della Pietra-
IBM T.]. Watson Research Center IBM T.J. Watson Research Center

Vincent J. Della Pietra* Robert L.. Mercer*
IBM T.). Watson Research Center IBM T.J. Watson Research Center

We describe a series of five statistical models of the translation process and give algorithms for
estimating the parameters of these models given a set of pairs of sentences that are translations
of one another. We define a concept of word-by-word alignment between such pairs of sentences
For any given pair of such senlences each of our models assigns a probability to each of the
possible word-by-word alignments. We give an algorithm for seeking the most probable of these
alignments. Although the algorithm is suboptimal, the alignment thus obtained accounts well for
the word-by-word relationships in the pair of sentences. We have a great deal of data in French
and English from the proceedings of the Canadian Parliament. Accordingly, we have restricted
our work to these two languages; but we feel that because our algorithms have minimal linguistic
content they would work well on other pairs of languages. We also feel, again because of the
minimal linguistic content of our algorithms, that it is reasonable to argue that word-by-word
alignments are inherent in any sufficiently large bilingual corpus

1. Introduction

The growing availability of bilingual, machine-readable texts has stimulated interest
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recognized, as the authors mention, by Weaver .
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MT - Past, Present, Future, Ellis Horwood, Fred ] elinek
1986, p. 30ff and references therein). The crude (1932-2010)
force of computers is not science. The paper is
simply beyond the scope of COLING.”
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For any given pair of such senlence h of our models assigns a probability to each of the
possible word-by-word alignments. We give an algorithm for seeking the most probable of these
alignments. Although the algorithm is suboptimal, the alignment thus obtained accounts well for
the word-by-word relationships in the pair of sentences. We have a great deal of data in French
and English from the proceedings of the Canadian Parliament. Accordingly, we have restricted
our work to these two languages; but we feel that because our algorithms have minimal linguistic
content they would work well on other pairs of languages. We also feel, again because of the
minimal linguistic content of our algorithms, that it is reasonable to argue that word-by-word
alignments are inherent in any sufficiently large bilingual corpus
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