Decoding

THE STORY SO FAR...

SCHEDULE

- TODAY

- word-based translation (conceptual)
- THURSDAY
 - incorporating model scores
 - efficiency considerations

DECODING

- alignment
 - input: parallel sentences
 - task: learn a model of translation (probabilities of word translations, fertilities, and distortions)
- decoding
 - input: foreign-language sentence and a model
 - task: find the model's favorite translation

DECODING

- the process of producing a translation of a sentence
- Two main problems:
 - modeling How do we score translations?
 - **search** How do we find the model's preferred translation?

DECODING (MODELING)

- Decoding stories
 - Model 1: translate each word, scramble them
 - parameters: p(e | f)

MODEL 1

DECODING (MODELING)

- Decoding stories
 - Model 2: translate each word, order them conditioned on absolute position
 - parameters: p(e | f)
 - new parameters: a(i | j, |E|, |F|)

MODEL 2

lexical translation step

alignment step

DECODING (MODELING)

- Decoding stories
 - Model 3: model how often each word likes to get translated
 - parameters: p(e | f), a(i | j, |E|, |F|)
 - new parameters: $n(\phi | f)$

MODEL 3

DECODING (MODELING)

- These models are actually quite a bit more complicated than what we actually use in word-based decoding
- Today: you're the model
- Thursday: we'll use a real, learned model

DECODING (SEARCH)

- How do we find the translation?
- Easy way: generate all sentences, score them with the model
- Formulate this as stack-based decoding

DECODING (SEARCH)

- Start with a list of hypotheses, containing only the empty hypothesis
- For each stack
 - For each hypothesis
 - For each applicable word
 - Extend the hypothesis with the word
 - Place the new hypothesis on the right stack

Demo

Simple Spanish example (ttable.js)

PROBLEM

- Which hypothesis should we extend?
 - Long hypotheses compete with short ones
 - Use multiple stacks for organization

Demo

Longer Spanish example (ttable-spanish.js)

PROBLEM

- There are too many hypotheses!
 - Restrict where the next word can come from.
 - Monotonic translations
 - Within n words, $n \in \{1,2,3\}$
 - Anywhere

Activity

http://cs.jhu.edu/~post/mt-class/stack-decoder/index.html

Instructions (10 minutes)

Get in groups, and build out the complete table hypothesis chart using different constraints:

- monotonic
- 1 word distortion
- 2 word distortion
- 3 word distortion

CONCEPTS

- distortion: which words are permitted to extend a hypothesis
- for Thursday
 - pruning: histogram and beam/threshold
 - dynamic programming
 - beam and threshold pruning

Demo

German example (from textbook; ttable-german.js)

TYPES OF ERRORS

- Search errors

- we didn't look hard enough (or smart enough)
- shortcuts we took excluded good hypotheses
- Model errors
 - the solution was impossible under our assumptions
 - the ideal answer cannot be obtained by the model