Decoding

continued

Activity

Build a translation model that we'll use later today.

Instructions

- Subject is "mt-class"
- The body has six lines
- There is one, oneword translation per line

ADMINISTRATIVE

- Schedule for language in 10 minutes

- Leaderboard

THE STORY SO FAR...

1

under the strong north wind.

SCHEDULE

- TUESDAY

 stack-based decoding in conception

- TODAY

- stack-based decoding in practice
- scoring, dynamic programming, pruning

DECODING

- the process of producing a translation of a sentence
- Two main problems:
 - modeling given a pair of sentences, how do we assign a probability to them?

他们还缺乏国际比

赛的经验.

They still lack experience in international competitions

DECODING

- the process of producing a translation of a sentence
- Two main problems:
 - modeling given a pair of sentences, how do we assign a probability to them?

MODEL

- Noisy Channel model
$$P(e \mid f) \propto P(f \mid e)P(e)$$

MODEL TRANSFORMS

- Add weights

$$P(e \mid f) \propto P(f \mid e)P(e)$$

$$\propto P(f \mid e)^{\lambda_1}P(e)^{\lambda_2}$$

WEIGHTS

- Why?

- Just like in real life, where we trust people's claims differently, we will want to learn how to trust different models

"I can do a backflip off this pommel horse"

MODEL TRANSFORMS

- Log space transform

$$P(e \mid f) \propto P(f \mid e)P(e)$$

$$\propto P(f \mid e)^{\lambda_1}P(e)^{\lambda_2}$$

$$= \lambda_1 \log P(f \mid e) + \lambda_2 \log P(e)$$

- Because:

$$0.0001 * 0.0001 * 0.0001 = 0.000000000001$$

 $log(0.0001) + log(0.0001) + log(0.0001) = -12$

MODEL TRANSFORMS

- Generalization

$$P(e \mid f) \propto P(f \mid e)P(e)$$

$$\propto P(f \mid e)^{\lambda_1}P(e)^{\lambda_2}$$

$$= \lambda_1 \log P(f \mid e) + \lambda_2 \log P(e)$$

$$= \lambda_1 \varphi_1(f, e) + \lambda_2 \varphi_2(f, e)$$

$$= \sum_i \lambda_i \varphi_i(f, e)$$

MODEL

weight
$$e^*, a^* = \underset{e, a}{\operatorname{argmax}} \Pr(e, a \mid c)$$

$$e^*, a^* = \underset{e, a}{\operatorname{argmax}} \Pr(e, a \mid c)$$

$$feature$$

$$functionsel$$

$$how do we$$

$$find it?$$

$$what is a good$$

$$translation?$$

A better "fundamental equation" for MT

DECODING

- the process of producing a translation of a sentence
- Two main problems:
 - search given a model and a source sentence, how do we find the sentence that the model likes best?
 - impractical: enumerate all sentences, score them
 - stack decoding: assemble translations piece by piece

STACK DECODING

- Start with a list of hypotheses, containing only the empty hypothesis
- For each stack
 - For each hypothesis
 - For each applicable word
 - Extend the hypothesis with the word
 - Place the new hypothesis on the right stack

 Stack decoding works by extending hypotheses word by word

- These can be arranged into a search graph representing the space we search

 Stack decoding works by extending hypotheses word by word

- These can be arranged into a search graph representing the space we search
- The component models we use need to *factorize* over this graph, and we accumulate the score as we go

- Example hypothesis creation:

- translation model: trivial case, since all the words are translated independently

hypothesis.score $+= P_{TM}(am \mid tengo)$

- a function of just the word that is added

- Example hypothesis creation:

- language model: still easy, since (bigram) language models depend only on the previous word

hypothesis.score $+= P_{LM}(am | I)$

- a function of the old hyp. and the new word translation

DYNAMIC PROGRAMMING

- We saw Tuesday how huge the search space could get
- Notice anything here?

- (1) <s> is never used in computing the scores AND
 - (2) <s> is implicit in the graph structure
- let's get rid of the extra state!

DYNAMIC PROGRAMMING

- Before

- After

The score of the new hypothesis is the maximum way to compute it

STACK DECODING (WITH DP)

- Start with a list of hypotheses, containing only the empty hypothesis
- For each stack
 - For each hypothesis
 - For each applicable word
 - Extend the hypothesis with the word
 - Place IF either (1) no equivalent hypothesis exists or (2) this hypothesis has a higher score.

MORE GENERALLY

- What is an "equivalent hypothesis"?
- Hypotheses that match on the minimum necessary state:
 - last word (for language model computation)
 - the score (of the best way to get here)
 - the coverage vector (so we know which words we haven't translated)

OLD GRAPH (BEFORE DP)

PRUNING

- Even with DP, there are still too many hypotheses
- So we prune:
 - histogram pruning: keep only k items on each stack
 - threshold pruning: don't keep items that have a score beyond some distance from the most probable item in the stack

STACK DECODING (WITH PRUNING)

- Start with a list of hypotheses, containing only the empty hypothesis
- For each stack
 - For each hypothesis
 - For each applicable word
 - Extend the hypothesis with the word
 - If it's the best, place the new hypothesis on the right stack (possible replacing an old one)
 - Prune

PITFALLS

- Search errors
 - def: not finding the model's highest-scoring translation
 - this happens when the shortcuts we took excluded good hypotheses
- Model errors
 - def: the model's best hypothesis isn't a good one
 - depends on some metric (e.g., human judgment)

Activity

http://cs.jhu.edu/~post/mt-class/stack-decoder/

Instructions (10 minutes)

In groups or alone, find the highest-scoring translation under our model under different stack size and reordering settings.

Are there any search or model errors?

IMPORTANT CONCEPTS

- generalized weighted feature function formulation
- decoding as graph search
- factorized models for scoring edges
- dynamic programming
- pruning (histogram, beam/threshold)

NOT DISCUSSED (BUT IMPORTANT)

- Outside (future) cost estimates and A* search
- Computational complexity