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Phrase-based Models

¥ Segmentation probabilities: Pxed (uniform)

¥Distortion probabillities: Pxed (decaying)



Learning p(Chinese|English)

¥Reminder: (nearly) every problem comes down to
computing either:

¥ Sums: MLE or EM (learning)

¥ Maximum: most probable (decoding)



Recap: Expectation Maximization

¥ Arbitrarily select a set of parameters (say, uniform).

¥ Calculate expected countsof the unseen events.

¥ Choose new parameters to maximize likelihood,
using expected counts as proxy for observed counts.

¥ lterate.

¥ Guaranteed that likelihood is monotonically
nondecreasing.
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We have to sum over exponentially many alignments!
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probablility of an alignment.

factors across words.
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EM for Phrase-Based

¥Model parameters: p(E phrase|F phrase)

¥ All we need to do is compute expectations:

p(ai,+ = {,j '), FIE)
p(F, E)

P(F.E)sums over all possible phrase alignments

p(a; = J|F,E) =

...which are one-to-one by dePnition.
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Although north wind howls , but sky still very clear
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However , the sky remained clear under [the strong north wind].

p(ai,+ = {,j '), FIE)
p(F, E)

Can we compute this quantity?

How many 1-to-1 alignments are there of
the remaing 8 Chinese and 8 English words?

p(a; = J|F,E) =




Recap: Expectation Maximization

¥ Arbitrarily select a set of parameters (say, uniform).

¥ Calculate expected countsof the unseen events.
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Recap: Expectation Maximization

¥ Arbitrarily select a set of parameters (say, uniform).

¥ Calculate expected countsof the unseen events.

¥ Choose new parameters to maximize likelihood,

U
Computing expectations from a phrase-based
¥t . -
model, given a sentence pair, is #P-Complete
¥(; (by reduction to counting perfect matchings;
N DeNero & Klein, 2008)

INts.




Now What?

¥Option #1. approximate expectations

¥ Restrict computation to some tractable subset of
the alignment space (arbitrarily biased).

¥ Markov chain Monte Carlo (very slow).



Now What?

¥ Change the problem depPnition

¥ We already know how to learn word-to-word
translation models efbciently.

¥lIdea: learn word-to-word alignments, extract most
probable alignment, then treat it as observed.

¥ Learn phrase translations consistent with word
alignments.

¥ Decouples alignment from model learning -- is
this a good thing?
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Phrasal Translation Estimation

¥Option #1 (EM over restricted space)
¥ Align with a word-based model.

¥ Compute expectations only over alignments
consistent with the alignment grid.

¥ Option #2 (Non-global estimation)

¥ View phrase pairs as observed, irrespective of
context or overlap.
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Although the northern wind shrieked
across the sky, but was still very clear.
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Wait a second.

O(5n%2") is still far too much work.

Can we do better?

NO! Knight (1999) shows that this iIs NP-Complete,
by reduction to Hamiltonian Circult.
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¥Some (not all) key Ingredients in Google Translate:

¥ Phrase-based translation models

¥ ... Learned heuristically from word alignments
¥ ... Coupled with a huge language model

¥ ... And very tight pruning heuristics



