
Feature-Based
Models



•Some (not all) key ingredients in Google Translate:

•Phrase-based translation models

•... Learned heuristically from word alignments

•... Coupled with a huge language model

•... And very tight pruning heuristics

•Today: more flexible parameterizations.
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log(x) is monotonic for positive x
(i.e. log(x) > log(y) iff x>y)
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p(English) × p(Chinese|English)

Note: Original model is a special case of this model!
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p(English|Chinese) =
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Z is the normalization term or partition function

The functions hk are features or feature functions
They are deterministic (fixed) functions of the

input/output pair.

The parameters of the model are the        terms.λk
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•Language model: p(English)

•Translation model: p(Chinese|English)

•Reverse translation model: p(English|Chinese)

•The number of words in the English sentence.

•The number of verbs in the English sentence.

•1 if the English sentence has a verb, 0 otherwise.
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What’s a Feature?

•A word-based translation model: p(Chinese|English)

•Agreement features in the English sentence.

•Features over part-of-speech sequences in the 
English sentence.

•How many times the sentence pair includes the 
English word north and Chinese word 北.

•Do words north and 北 appear in a dictionary?

A feature can be any function in the form: 
hk : English× Chinese→ R+
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Techniques: SGD, L-BFGS

Require computing derivatives (expectations!), iterating.
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Problems

•Inference is high-order polynomial!

•Compute over n-best lists of outputs.

•Compute over pruned search graphs.

•Reachability: what if data likelihood is zero?

•Throw away data.

•Pretend sentence with highest BLEU score is 
observed.
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Problems

•Why maximize likelihood if we care about BLEU?


