Syntax-based decoding

Tuesday, March 27, 2012

Administrative issues

- Class moving to Shaffer 202 starting this Thursday
- Assignment 2 due a week from today
 - Extra TA office hours on Monday
 - Leaderboards...
- Get your revised proposals in!

Review (I)

 We've discussed how syntactic differences between languages motivated reordering as a preprocessing step

> Ich werde Ihnen den Report aushaendigen, damit Sie den eventuell uebernehmen koennen.

Ich werde aushaendigen Ihnen den Report, damit Sie koennen uebernehmen den eventuell.

Review (2)

• We've also discussed synchronous grammar rules, which describe the generation of sentences in pairs

	Urdu	English
S →	NP1) VP2)	NP1 VP2
VP→	PP1VP2	VP2 PP1
VP→	V1 AUX2	AUX2V1
$PP \rightarrow$	NP(1) P(2)	P2 NP1
$NP \rightarrow$	hamd ansary	Hamid Ansari
$NP \rightarrow$	na}b sdr	Vice President
$\vee \rightarrow$	namzd	nominated
$P \rightarrow$	kylye	for
AUX →	taa	was

Review (3)

 ...and how we could extract those rules automatically from text

Today

- How do we actually decode with these grammars?
- CYK algorithm The solution is the CKY
- Outline
 - Parsing in one language

- Decoding as parsing with synchronous context-free grammars (SCFG) and integrated language models
- Time-permitting: advanced topics

Review: monolingual parsing

Using the CKY algorithm to find (the best) structure for a sentence given a grammar

Formal definitions

- Formal languages are (possibly infinite) sets of strings that are generated by a grammar
 - e.g., {a+} is a language of all strings with one or more as
 - Its grammar could be written as
 - $A \rightarrow Aa$
 - $A \rightarrow a$
- We can view natural languages in this manner, too
 - e.g., the English language is the set of word sequences that constitute valid English sentences
 - We believe there to be a grammar that generates those sentences
 - We don't know what it is, but we have some guesses and approximations

Parsing

• Given a sentence and a grammar, how do we find its structure?

Basic idea: build small items before larger ones

PRT

5	→	NP VP
VP	\rightarrow	VBN PRT
PRT	\rightarrow	RP
VP	\rightarrow	VBD VP
NP	\rightarrow	NNP NNP
NNP	\rightarrow	Fred Jones
VBD	\rightarrow	was
VBN	\rightarrow	worn
RP	\rightarrow	out

C ND VD

sentence

grammar

Parsing with CKY

S	\rightarrow	NP VP	
VP	\rightarrow	VBN PRT	
PRT	\rightarrow	RP	
VP	\rightarrow	VBD VP	
NP	\rightarrow	NNP NNP	
NNP	\rightarrow	Fred Jones	
VBD	\rightarrow	was	
VBN	\rightarrow	worn	
RP	\rightarrow	out	

sentence

grammar

Implementation details

- Dynamic programming maintains a chart of items
 - Each cell item represents the dynamic programming state
 - (NNP,1,1), (S,1,5)
 - The chart is the collection of all items

- The score resolves alternate ways of constructing an item
- We also store backpointers: the items and rule used to construct each item

a.k.a. "predecessor"

CKY algorithm

```
input: words[1..N]
for i in 1..N
 for each unary rule X → words[i]
   add (X,i,i) to the chart
for span in 1..N
 for i in 1..(N-span)
   j = i + span
   for k in i...j
     for rule X \rightarrow Y Z
       if (Y,i,k) and (Z,k,j)
        add (X,i,j) to the chart
output: (S,1,N)
```

Parsing with CKY

NNP Fred NP 2 NNP lones 3 **VBD** was 4 **VBN** worn RP 5 **VP VP** out **PRT**

was

worn

out

Fred

lones

5

```
item
  nt = "S";
  i = 1, j = 5;
  score = -42.5;
  Rule = &rule("S → NP VP")
  rhs1 = &item(NP,1,2);
  rhs2 = &item(VP,3,5);
```

Reconstructing the best parse

 We can reconstruct the best parse by following backpointers

```
nodes.append(item(S,1,N))
while nodes.size() > 0:
   item = nodes.pop()
   print item
   nodes.append(item.rhsr)
   nodes.append(item.rhsl)
```

nodes

((**(NAB)R)2)**(NNP, I, I)


```
S \rightarrow NP \ VP (1,5)

NP \rightarrow NNP \ NNP (1,2)

NNP \rightarrow Fred (1,1)

NNP \rightarrow Jones (2,2)

VP \rightarrow VBD \ VP (3,5)

VBD \rightarrow was (3,3)

VP \rightarrow VBN \ PRT (4,5)

VBN \rightarrow worn (4,4)

PRT \rightarrow RP (5,5)

RP \rightarrow out (5,5)
```

Parsing with CKY

Fred Jones was worn out from caring for his often screaming and crying wife during the day but he couldn't sleep at night for she in a stupor from the drugs that didn't ease the pain would set the house ablaze with a cigarette

Parsing as (weighted) deduction

- Deductive reasoning:
 - axioms: statements that are true or false ("it is raining")
 - inference rules: statements that are conditionally true ("If it is raining and I am outside, I'll get wet")
 - goals: statements that are licensed by combinations of axioms, inference rules, and other conclusions ("I am wet")

Parsing as (weighted) deduction

• input: words w[1..N]

Axioms	$X \rightarrow w[i]$	for all $(X \rightarrow w[i])$
Inference rules	$\frac{X \to w[i]}{(X, i, i)}$ $\frac{(B, i, j) (C, j, k) A \to BC}{(A, i, k)}$	in bottom-up order (smaller spans first)
Goal	(S, I, n)	

Complexity

- Complexity of parsing is O(Gn³)
 - G number of (binarized) rules in the grammar
 - n length of the sentence
- All those rules were binary; what about longer rules?
 - e.g.,

• We have to enumerate every split point!

CKY algorithm

```
input: words[1..N]
for i in 1..N
  for each unary rule X → words[i]
    add (X,i,i) to the chart
                                          NP
for span in 1..N
  for i in 1..(N-span)
    j = i + span
    for k_1 in i...j-1
                                     i.....k_1....k_2......j
      for k_2 in k_1...j
        for rule X \rightarrow W Y Z
          if (W,i,k1) and (Y,k1,k2) and (Z,k2,j)
            add (X,i,j) to the chart
output: (S,1,N)
```

Binarization into Chomsky Normal Form

- In general, for a rule with k RHS items, complexity is O(n^{k+1}) (and cumbersome, since you have to explicitly add inner loops to enumerate them)
- Fortunately, we can binarize rules to make them all have a rank of 2

CKY algorithm

- In summary, monolingual parsing:
 - finds the best structure
 - works bottom-up, enumerating all spans, from small to large, building searching for applicable rules and building new chart items
 - works with the binarized form of a grammars (easily unbinarized afterward) for a complexity of O(Gn³)
 - all grammars are binarizable

Synchronous parsing

- We can extend CKY to parse two languages at once!
- Consider the following grammar:

```
A \rightarrow fat, guapos (lexical)

A \rightarrow thin, delgados

N \rightarrow cats, gatos

VP \rightarrow eat, comen

NP \rightarrow A<sup>(I)</sup> N<sup>(2)</sup>, N<sup>(2)</sup> A<sup>(I)</sup> (inverted)

S \rightarrow NP<sup>(I)</sup> VP<sup>(2)</sup>, NP<sup>(I)</sup> VP<sup>(2)</sup> (straight)
```

and the following sentence pair:

fat cats eat / gatos guapos comen

Synchronous parsing

- We now have to enumerate pairs of spans
 - instead of (i,j)...
 - ...we have (i,j) and (s,t)
- For each of the bilingual blocks, we attempt to match both straight and inverted rules

A \rightarrow fat, guapos N \rightarrow cats, gatos VP \rightarrow eat, comen VP \rightarrow eat, como NP \rightarrow A⁽¹⁾ N⁽²⁾, N⁽²⁾ A⁽¹⁾ S \rightarrow NP⁽¹⁾ VP⁽²⁾, NP⁽¹⁾ VP⁽²⁾

comen	(3,3,3,	3)	(3,3, 3,3)
guapos	(1,1, 2,2)	(1,2, 1,2)	
gatos		(2,2, 1,1)	
	fat	cats	eat

Relation to monolingual parsing

- Why do we combine like this?
 - Think about monolingual CKY: combine adjacent spans

- These pieces are adjacent in both languages; it's only when we consider them together that reordering comes into play
- Why can't we do this?
 - It doesn't make sense!
- What about these?
 - Possible, but complex

CKY for synchronous parsing

```
input: source[1..N], target[1..M]
for span<sub>1</sub> in 1..N
                                       comen
  for i in 1...(N-span_1)
    j = i + span_1
                                                          2
                                       guapos
      for k in i...j
        for span<sub>2</sub> in 1..M
                                       gatos
           for s in 1..(M-span_2)
             t = s + span_2
                                             fat
                                                 cats
                                                      eat
               for u in s..t
                  for rule X \rightarrow [Y Z]
                    if (Y,i,k,s,u) and
                        (Z,k,j,u,v) then
                      add (X,i,j,s,t) to chart
output: (S,1,N,1,M)
```

Synchronous parsing

- Complexity: $O(GN^3M^3) \approx O(GN^6)$
- Why?
 - We have to enumerate all valid combinations of six variables
 - This can be seen in the six nested loops of the algorithm

A \rightarrow fat, guapos N \rightarrow cats, gatos VP \rightarrow eat, comen VP \rightarrow eat, como NP \rightarrow A⁽¹⁾ N⁽²⁾, N⁽²⁾ A⁽¹⁾ S \rightarrow NP⁽¹⁾ VP⁽²⁾, NP⁽¹⁾ VP⁽²⁾

comen	(3,3,3,	3)	(3,3, 3,3)
guapos	(1,1, 2,2)	(1,2, 1,2)	
gatos		(2,2, 1,1)	
	fat	cats	eat

Visualization of O(GN6) complexity

```
input: source[1..N], target[1..M]
for span<sub>1</sub> in 1..N
  for i in 1...(N-span_1)
    j = i + span_1
      for k in i...j
        for span<sub>2</sub> in 1..M
          for s in 1..(M-span_2)
            t = s + span_2
              for u in s..t
times all rules... for rule X → [Y Z]
                   if (Y,i,k,s,u) and
                       (Z,k,j,u,v) then
                     add (X,i,j,s,t) to chart
output: (S,1,N,1,M)
```

Synchronous binarization

- In the above, we considered two nonterminals (per side)
- What if we want more (Zhang et al., 2006)?

$$S \rightarrow NP^{(1)} VP^{(2)} PP^{(3)}, NP^{(1)} PP^{(3)} VP^{(2)}$$

 $NP \rightarrow Powell, Baoweier$
 $VP \rightarrow held a meeting, juxing le huitan$
 $PP \rightarrow with Sharon, yu Shalong$

• Three nonterminals? No problem:

• More?

Permutations

- The nonterminals in the right-hand side of a rule define a permutation between the languages
 - wlog, we assume the source language nonterminals are in order
 - intermingled terminal symbols do not affect binarization ability
- Example: $S \rightarrow NP^{(1)} VP^{(2)} PP^{(3)}, NP^{(1)} PP^{(3)} VP^{(2)}$
 - permutation: I 3 2

Synchronous binarization

- Bad news: synchronous grammars can't be binarized in the general case (Shapiro & Stephens, 1991; Wu, 1997) *
- Famous examples: the (2,4,1,3) and (3,1,4,2) permutations

- What makes these unbinarizable?
 - Crucial: parsing works by combining adjacent elements
 - No pair of alignments here is adjacent in *both* languages simultaneously

^(*) Technically, you can binarize any synchronous grammar, but you may increase the **fan-out**, which mitigates the potential gains.

Synchronous binarization

 As the rank of a rule grows, the percentage of binarizable rules approaches 0

- In summary:
 - We can't binarize all rules
 - The first unbinarizable rule has rank 4

Silver lining

• Empirically, we don't observe that many non-binarizable rules (Zhang et al., 2006):

Figure 6: The solid-line curve represents the distribution of all rules against permutation lengths. The dashed-line stairs indicate the percentage of non-binarizable rules in our initial rule set while the dotted-line denotes that percentage among all permutations.

- ...and we can safely throw out the ones we do find
 - 99.7% of rules extracted were binarizable
 - many not were due to alignment errors

Synchronous decoding

- Enough parsing; what we care about is decoding
- Parsing is relevant, though, because we can view decoding as a task where we are doing synchronous parsing but we don't happen to know the target side text
- This works by parsing with a source-side projection of the synchronous grammar rules
 - At the end, we can follow backpointers to discover the most probable target side

Updated data structure

• Just like regular parsing, we combine items in pairs to produce new items over larger spans:

$$(A,I,I)$$
 $(N,2,2)$ $(NP,I,2)$

 However, we also have to maintain our guess of the target side

```
A \rightarrow fat, guapos

N \rightarrow cats, gatos

VP \rightarrow eat, comen

VP \rightarrow eat, como

NP \rightarrow A<sup>(1)</sup> N<sup>(2)</sup>, N<sup>(2)</sup> A<sup>(1)</sup>

S \rightarrow NP<sup>(1)</sup> VP<sup>(2)</sup>, NP<sup>(1)</sup> VP<sup>(2)</sup>
```

Decoding

Again, a bottom-up process

 $A \rightarrow fat$, guapos

 $N \rightarrow cats, gatos$

 $VP \rightarrow eat, comen$

 $VP \rightarrow eat, como$

 $NP \to A^{(1)} N^{(2)} N^{(2)} A^{(1)}$

 $S \rightarrow NP^{(1)}VP^{(2)}, NP^{(1)}VP^{(2)}$

Legend

straight rule application

- - - inverted rule application

1.0

0.1

0.9

1.0

1.0

Getting the translation

- Follow the backpointers
 - (S, I, 3)
 - (NP, I, 2)
 - $(N,2,2) \rightarrow gatos$
 - $(A,I,I) \rightarrow guapos$
 - $(VP,3,3) \rightarrow como$
- translation:
 gatos guapos como
 * cats fat l ps-eat

What happened?

- We forgot the language model
- We're inventing the target side (which is what decoding does), so we need to incorporate it
- How?
 - Stack-based decoding: we maintained the last word
 - Integration was easy because hypotheses always extended to the right
 - Here, hypotheses are merged either straight or inverted

Language model integration

phrase-based

$$\begin{array}{c|c} ~~I \\ \hline \bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc \\ \end{array} + \begin{array}{c|c} tengo \\ \hline \rightarrow am \end{array} = \begin{array}{c|c} ~~I am \\ \hline \bigcirc\bigcirc\bigcirc\bigcirc\bigcirc \\ \end{array}~~~~$$

synchronous grammars

$$\begin{array}{c} A \ (I,I) \\ I.0 \end{array} + \begin{array}{c} N \ (2,2) \\ I.0 \end{array} + \begin{array}{c} A \ (I,I) \\ I.0 \end{array} + \begin{array}{c} N \ (2,2) \\ I.0 \end{array} \\ NP \rightarrow A^{(I)} \ N^{(2)}, \ N^{(2)} \ A^{(I)} \\ = \end{array} \\ \begin{array}{c} NP \rightarrow A^{(I)} \ N^{(2)}, \ A^{(I)} \ N^{(2)} \\ = \end{array} \\ \begin{array}{c} NP \rightarrow A^{(I)} \ N^{(2)}, \ A^{(I)} \ N^{(2)} \\ = \end{array} \\ \begin{array}{c} NP \rightarrow A^{(I)} \ N^{(I,2)} \\ I.0 \\ I.0 \\ I.0 \\ I.0 \\ I.0 \end{array}$$

Language model integration

- We still maintain a chart of items, but now the items have to contain the target side words
- Just like regular parsing, we combine items in pairs to produce new items over larger spans
- When items are merged, we can use these words to compute a language model probability
- Formally, we are intersecting a context-free grammar (the translation model) with a regular grammar (Bar-Hillel et al., 1964; Wu, 1996)

Updated data structure

- With dynamic programming, we only need a word on either side
 - (for bigram LMs; for the general case, see Chiang (2007, §5.3.2))
 - Following Chiang, we represent the elided middle portion with a *
 - The complete string can be reconstructed by following the backpointers

```
struct item {
 // d.p. state
 string nt;
 int i, j;
 string left_words;
 string right words;
 // backpointer
 float score;
 Rule* rule;
 item* rhs1,
        rhs2;
```

Decoding with an integrated LM

Getting the translation

- Follow the backpointers
 - (S, I, 3, gatos ★ comen)
 - (NP, I, 2, gatos ★ guapos)
 - $(N,2,2,gatos) \rightarrow gatos$
 - $(A, I, I, guapos) \rightarrow guapos$
 - (VP,3,3,comen) → comen
- translation:
 gatos guapos comen
 cats fat 3pp-eat

Pruning

- We have also not dealt much with ambiguity and competition amongst hypotheses
- In general, there are too many hypotheses to consider, so we keep only the top k of them (per input span (i,j))
- When considering a span (i,j) and a split point k, we have a large number of ways to combine items
 - there can be any number of applicable rules
 - there can be up to k items located at span (i,k)
 - there can be up to k items located at span (k,j)

Applying a unary rule

 $X \rightarrow \langle \text{cong } X_{\square}, \text{through } X_{\square} \rangle$ 10 |11.1 |14.3 |17.3

 $X \rightarrow \langle \text{cong } X_{[1]}, \text{ from the } X_{[1]} \rangle$ 2

• The naive way is to consider the full cross product

		[X, 6, 8; the scher	[X, 6, 8; the plan]	[X, 6, 8; the proje	
		1	4	7	
$X \to \langle cong \ X_{\boxed{1}}, from \ X_{\boxed{1}} \rangle$	1	2.1	5.1	8.2	[X, 5, 8; from the \star the scheme]: 2.1
$\rightarrow \langle \operatorname{cong} X_{\square}, \operatorname{from the} X_{\square} \rangle$	2	5.5	8.5	11.5	\Rightarrow [X, 5, 8; from the \star the plan] : 5.1
$X \to \langle cong X_{\boxed{1}}, since X_{\boxed{1}} \rangle$	6	7.7	10.6	13.1	[X, 5, 8; from the \star the scheme] : 5.5

[X, 5, 8; since the * the scheme] : 7.7

Cube pruning

- When considering a span (i,j) of a length-N sentence:
 - unary rules: there are rk items to compute (r the number of rules, k the number of child items)
 - binary rules: there are Nrk^2 items to compute (since there are O(N) split points)
- However, we're only going to be keeping the top k of them!
 - this problem gets worse as k gets larger
- We'd like to avoid computing all of these new items, which we accomplish with cube pruning

Cube pruning

- We start with sorted lists of rules and the items they applied to
- Observation:
 - the best item comes from the best rule and the best cell
 - the next-best item uses either the 2nd best rule or the 2nd-best cell

	rule	rhsl	rhsr
Ι	Ι	Ι	- 1
2	2	7	3
3	4	9	4
•••			

	rule	rhsl	rhsr
- 1			_
2	2	7	3
3	4	9	4
•••			

	rule	rhsl	rhsr
I	I	I	I
2	2	7	3
3	4	9	4

best item

2nd-best

3rd-best

Applying a unary rule

• The Huang & Chiang (2005) way:

		[X, 6, 8; the scheme]	[X, 6, 8; the plan]	[X, 6, 8; the project]	[X, 6, 8; the scheme]	[X, 6, 8; the plan]	[X, 6, 8; the project]	[X, 6, 8; the scheme]	[X, 6, 8; the plan]	ACCOUNT OF THE PERSON NAMED OF THE PERSON NAME
		1	4	7	1	4	7	1	4	
$X \to \langle cong \ X_{\text{$\mathbb{1}$}}, from \ X_{\text{$\mathbb{1}$}} \rangle$	1	2.1	5.1		2.1	5.1	8.2	2.1	5.1	-
$X \to \langle cong \: X_{\text{\sc{i}}} \: , from \: the \: X_{\text{\sc{i}}} \: \rangle$	2	5.5			5.5	8.5		5.5	8.5	ſ
$X \to \langle cong \: X_{\tiny \fbox{1}}, since \: X_{\tiny \fbox{1}} \rangle$	6							7.7		
$X \to \langle cong \: X_{\text{$\ \square$}}, through \: X_{\text{$\ \square$}} \rangle$	10									

[X, 6, 8; the project]

Cube pruning

- We haven't discussed the language model, which complicates this procedure by making it *nonmonotonic*
- But that's the basic idea

Summary

- Today, we have reviewed
 - Monolingual parsing
 - Synchronous (bilingual) parsing
 - Decoding as parsing with an intersected bigram language model
- We have also briefly touched on efficiency considerations with cube pruning

Advanced topics: implicit binarization

• We'd decoded in an ITG settings, where the rules all look like this:

$$X \rightarrow \text{boy, chico}$$
 (lexical)
 $X \rightarrow X^{(1)} X^{(2)}, X^{(2)} X^{(1)}$ (inverted)
 $X \rightarrow X^{(1)} X^{(2)}, X^{(1)} X^{(2)}$ (straight)

- This is the closest thing to Chomsky Normal Form for synchronous grammars
- How do we decode with intermingled terminals and nonterminals?

$$X \rightarrow \text{the } X^{(1)} \text{ was } X^{(2)}, \text{ el } X^{(1)} \text{ era } X^{(2)}$$

Advanced topics: implicit binarization

• One answer: binarize (terminals can always be binarized):

- However, this is inefficient:
 - it leads to a huge blowup in the number of nonterminals
 - it introduces a split point that has to be searched over (avoidable in this case, but not always)

Advanced topics: implicit binarization

• Instead, we'd like to do implicit, Earley-style binarization

Advanced topics: spurious ambiguity

- Spurious ambiguity multiple structures leading to the same interpretation
- Especially problematic in ITG with its weak grammar
- This can be addressed in various ways
 - Grammar canonical forms