Syntax-based Language Modeling

April 12, 2012

many of today's examples were taken from Syntactic Theory: A formal introduction, 2nd Ed (Sag, Wasow, & Bender)

Today's goals

- Review some issues with MT output
- Examine past approaches to incorporating syntax
 - ...in speech recognition
 - ...in machine translation
- Understand how linguists approach grammars and the critical ways standard CFGs differ from them
- Look into current language modeling work

Evaluating translation

- Adequacy (faithfulness): was the meaning preserved?
- Fluency (grammaticality): is the sentence well-formed?
- •我们有一个共同的认识

	adequate	not adequate	
fluent	we have a common understanding	we do not agree	
disfluent	have an agreement	them owning compatibility	

Poor grammar is common

MT output

- still to define who is the winner
- not to mention of the parades .
- certainly will not regret , because the clothes that feels perfectly is invaluable .
- begins a new era of crisis
- the study shows that in the families of obese children are consumed much more often the drink chips .
- survey to 900 children

human reference

- it is time to define the winners .
- not to mention fashion shows .
- you will definitely not regret the investment, as perfectly fitting clothes are priceless.
- new era of crisis commences
- a survey has shown that fries are consumed more often in the families of obese children.
- the research was performed among 900 children.

Poor grammar can obscure meaning

of games of this kind can not be expected that recreated with deformities and collisions complicated , but in fact before a coup against any object , you can not predict how will your car , so not everything is in order .

reference:

from a game of this type , one does not expect complicated deformations and collisions , but when you have no idea , before crashing into any object , how your car will act , something is not right .

not to stand in the passive listening and put something in place , we have learned of the suela shoes .

reference:

to have some change from listening, and gain some practical experience, we learned how to properly underlay shoe soles.

Why is the output so disfluent?

- One reason: we're not even modeling the grammar
- N-grams condition the probability of a word based on the previous n-1 words, but it is easy to show this is problematic:

The dog bit the goat. P(bit | dog)

The dog with the missing eye bit the goat P(bit | eye)

• With no concept of sentence structure (an intervening PP), the n-gram model fails here

Why is the output so disfluent?

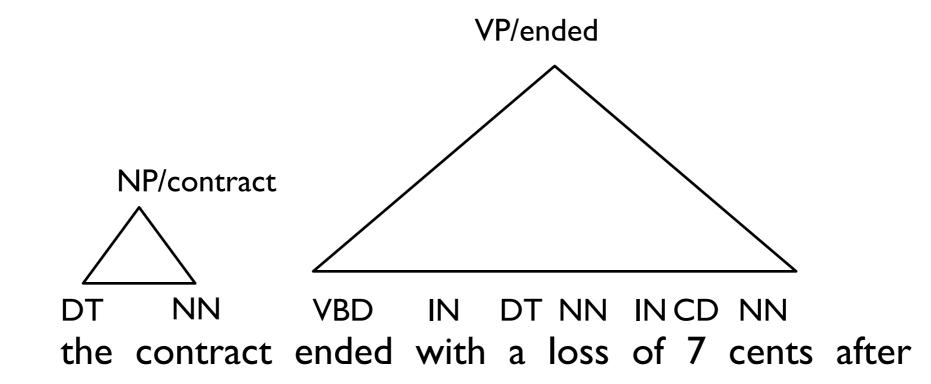
- Review: options for encoding languages
 - Lists
 - Regular expressions
 - Context-free grammars
 - Context sensitive grammars
 - Unrestricted grammars
- N-grams are essentially lists!
- So let's model structure!

Syntax-based LMs for ASR

- Speech recognition is like MT but without reordering
 - the translation model describes how acoustic signals get translated into phoneme and then words
 - the language model selects among the alternatives
- Since hypotheses are generated left-to-right, this integrates fairly naturally with ngrams.

Syntax-based LMs for ASR

- Chelba & Jelinek (1998) proposed a model that maintains constituents as part of the hypothesis representation
- When predicting words, we can now condition them on the labeled heads instead of just the previous few words



Syntax-based LMs for MT

- Charniak, Yamada, & Knight (2003): string-to-tree decoding
 - Words are translated and parsed at the same time
 - The dynamic programming forest is the *rescored* with the Charniak parser
- Charniak parser
 - state-of-the-art bilexical context-free parser

Bilexical parsing models

• So far, our CFG rules have looked like this:

 $S \rightarrow NPVP$

- But this isn't nearly detailed enough. Why not?
- Example on the board.

Bilexical parsing models

Annotates CFG productions with head words

 $S \rightarrow NPVP$

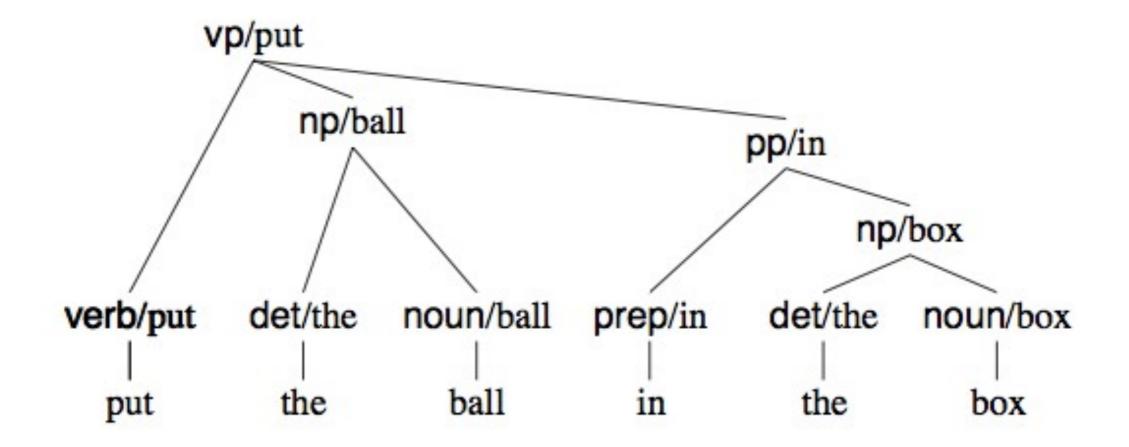
becomes

S/walked \rightarrow NP/boy VP/walked

- Nonterminals are annotated with words that correspond to the constituent's head
- You can think of such models as supplementing normal CFG productions with long-distance bigrams
 - These bigrams capture head-argument relationships

An example

- Also called "immediate-head" parsing models
- Here's an example from Charniak (2001)



Charniak, Yamada, & Knight (2003)

• Part of the difficulty is a metric mismatch

	System	Perfect	Syntactically	Semantically	Wrong	BLEU
	26	Translation	Correct but	Correct		
			Semantically	Syntactically		
			Wrong	Wrong		
syntax	TM + LM	45	67	70	164	0.0717
•	x TM only	Construction of the second s	19	87	209	0.1031
V	vord-based	26	11	87	223	0.0722

• But that's not the whole story

General observations

- It is hugely expensive to incorporate syntax in this way
- The gains are marginal and come at huge expense
 - (papers rarely report running time or resource consumption)
- Part of the reason is search, but a big part of the reason is also the model

Samples

5-gram LM

- Grammars are supposed to define languages
- Which of these is a sample from an ngram model, and which from a CFG?
 - the commissioner for labour , water transport the great hall of the people in beijing .
 - Wilson Protestantism Herald Of the fire settled \$ 7.52 million " at financial reviews .

Natent variable PCFG (Petrov et al., 2006)

Syntax in language

- Studying the structure of a language is an interesting empirical task!
 - It treats inherent, inscrutable linguistic judgments of native speakers as the gold standard!

It is April 12. * It are April 12.

 Syntacticians form hypotheses about a language generalization and then test it by looking for examples and counterexamples

Syntax as science: An example

- * We like us.
 We like ourselves.
 She likes her.
 She likes herself.
 Nobody likes us.
 - * Leslie likes ourselves.
- Hypothesis I: A reflexive pronoun can appear in a clause if that clause also contains a preceding coreferent expression.

Example adapted from Sag, Wasow, & Bender, itself borrowed from David Perlmutter.

Syntax as science: An example

- Hypothesis I: A reflexive pronoun can appear in a clause if that clause also contains a preceding coreferent expression.
- But what about:

Our friends like us.

- * Our friends like ourselves. Those pictures of us offended us.
- * Those pictures of us offended ourselves.
- Hypothesis 2: A reflexive pronoun must be an argument of a verb that has another preceding argument with the same referent.

English linguistic phenomena

 What are some other facts about language that we would like to encode?

Come up with a small list with your neighbor.

English linguistic phenomena

- Unbounded productivity
- Categories of words (noun, verb, preposition)
- Constraints on word order (* taught Matt class)
- High-level patterns (subject-verb-object)
- Agreement (I eat, * I eats)
- Predicate argument structure ("give" is ditransitive)
- Patterns of inflection (past: verb + ed; gerund: verb + ing)
- Noncompositional interpretations (threw under the bus)
- Exceptions (* The dog sleeped in the hallway)

English linguistic phenomena

Phenomenon	ngrams	context-free grammars	immediate-head models
infinite	\checkmark	\checkmark	\checkmark
word categories		\checkmark	\checkmark
word order		\checkmark	\checkmark
high-level patterns		\checkmark	\checkmark
agreement			\checkmark
predicate-argument structure			
morphology			

Problems with the models

- There are still many phenomena not captured by these models
- The generative process assumes vastly more independence than is warranted
- Independence assumptions of parsers are too permissive

model	task	difficulties	
parsers	discriminate structures (grammaticality assumed)	PP attachment, coordination	
language models	discriminate strings	ensuring global coherence	

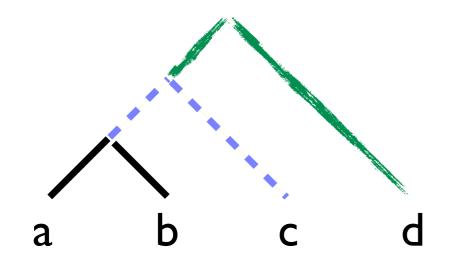
Current work

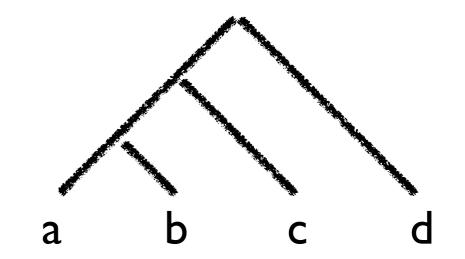
- Current work: extending the domain of locality
- Basic idea
 - Longer ngrams work by memorizing longer pieces of the text
 - The longer the ngram you use, the more likely it is that the text you are producing will be grammatical
- Apply the same idea to parse trees

In the meantime

- Desiderata
 - Inference no worse than it already is
 - Weak independence assumptions
- Search informed by grammar (so that grammatical candidates are not pruned)
- Syntax working as a language (and not a reordering) model

Is this sentence grammatical?



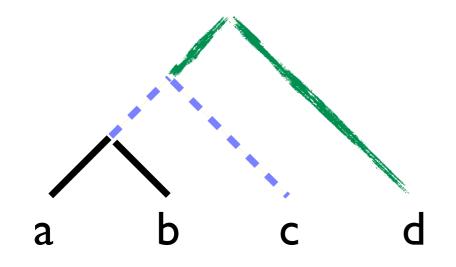


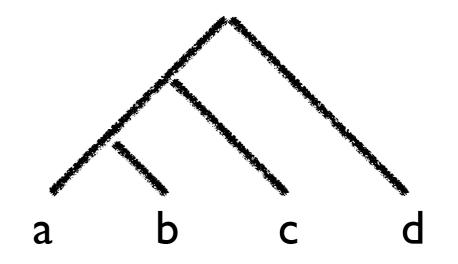
Is this sentence grammatical?

many little fragments

single large fragment

increased likelihood of grammaticality →





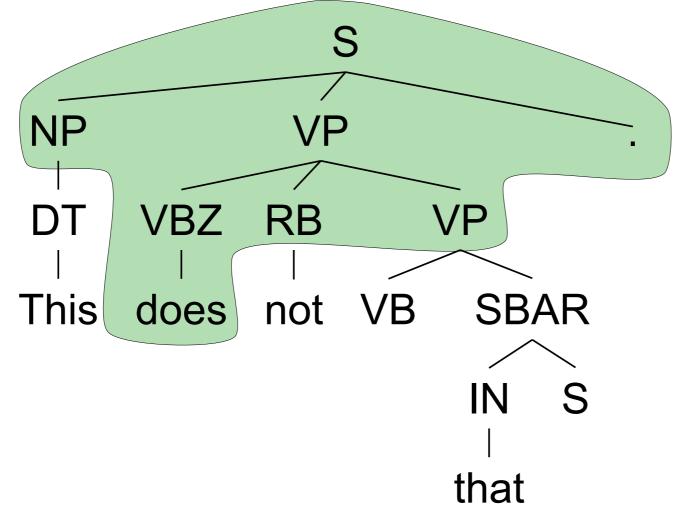
Tree substitution grammars

- This idea underlies translation approaches such as Galley et al. (2004, 2006), who use synchronous tree substitution grammars with some success
- But those fragments are learned for reordering, which complicates their utility as LMs



TSG example

- With TSGs, there is always a question of *what* fragments to use
 - With ngrams, we can just use all seen ones
- There are many techniques proposed for learning good fragments



A large hairy fragment and a more reasonable smaller one

Coarse language modeling

- It's difficult to incorporate syntax into search procedures
- We can evaluate the effectiveness of syntax on a much coarser level with a discriminative classification setup
 - Come up with positive and negative examples (grammatical and ungrammatical text)
 - Train models, see which ones do the best
- This should be an easier way to evaluate models

	positive	negative	
coarse	WSJ text	samples from an n- gram model	
ΜΤ	reference translations	machine translation output	

Experimental setup

- Classification
 - L2-regularized support vector classifier (liblinear)
 - tune regularization tradeoff on development data
 - LI-regularization for feature reporting
- Tree kernels: SVM-TK toolkit, again tuned regularization parameter

feature set	example
length	17
Gigaword 5-gram LM score	-12.045
bigrams and trigrams	"he further praised"
CFG productions	$S \rightarrow NPVP$.
Charniak & Johnson (2005) reranking features	number of nodes in the parse tree head projections
TSG (parse score, fragments, aggregate features)	(TOP (S NP (VPVBD said) NP SBAR) .)

Task I: ngram samples from real text

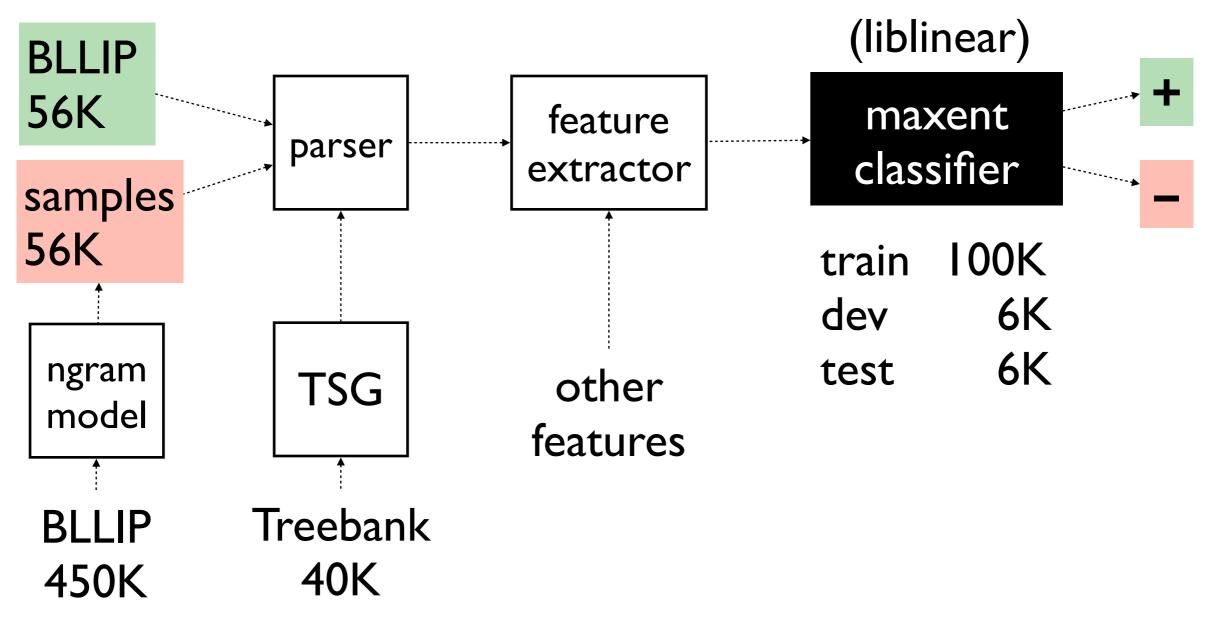
The most troublesome report may be the August merchandise trade deficit due out tomorrow . $_{24 \# 2}$

3-----

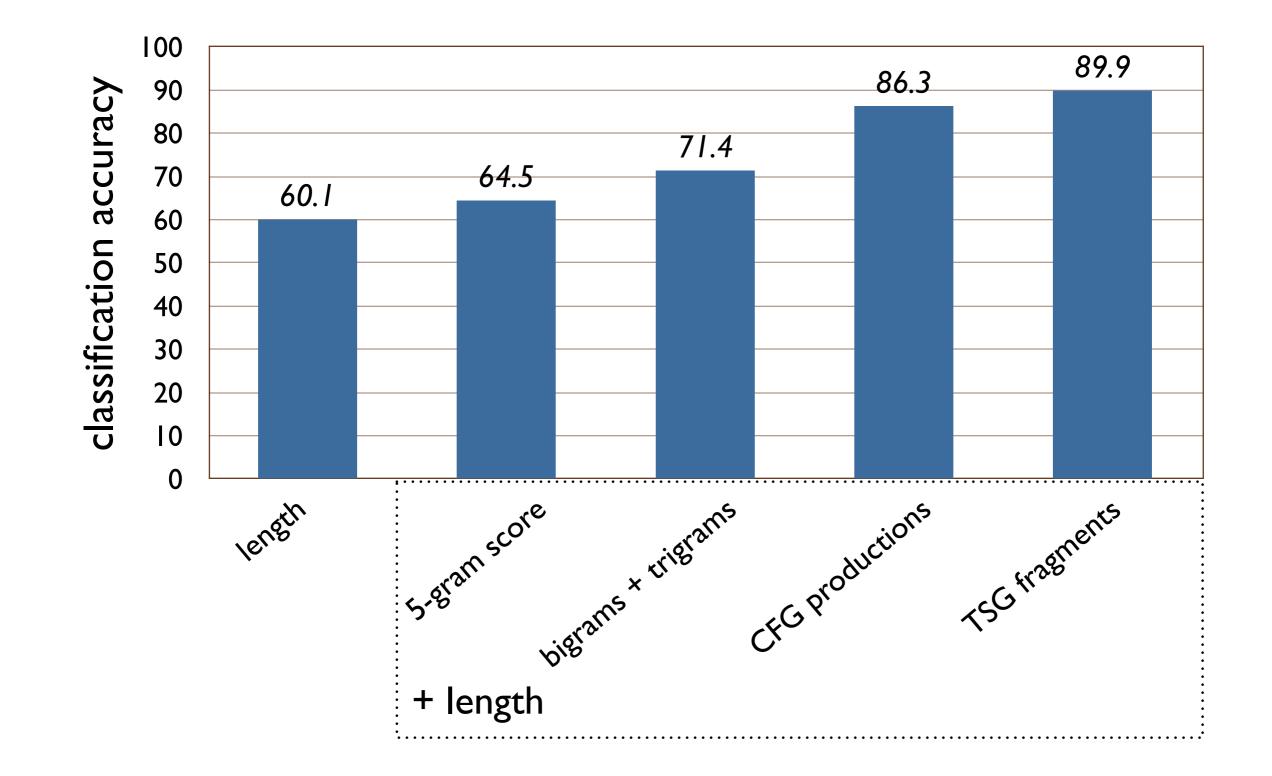
To and , would come Hughey Co. may be crash victims , three billion .

Experimental setup

• Following Cherry & Quirk (2008):



Classification results



What features are helpful?


```
(TOP (S `` S , " NP (VP (VBZ says) ADVP) .))
(FRAG (X SYM) VP .)
(PRN (-LRB- -LRB-) S (-RRB- -RRB-))
(PRN (-LRB- -LRB-) NP (-RRB- -RRB-))
(S NP VP .)
(SBARQ WHADVP SQ (.?))
(NNP Mr)
(PRN (COLON --) PP (COLON --))
(NNP Sons)
(WHNP WP$ NN NN)
```

(NP (NP DT CD (NN %)) PP) (NP DT) (PP (IN of)) [failed parse] (TOP (NP NP PP PP .)) (NP DT JJ NNS) (TOP (NP NP PP . ")) (TOP (S NP , NP VP . (" "))) (VP PP) (PP (IN with))

Analysis

- What kinds of features are useful?
- Looking at the 100 top- and bottom-weighted features

	bad	good	example
unary productions	47	36	NP → DT
lexicalized fragments	37	60	(SBARQ WHADVP SQ (. ?))
bilexicalized fragments	I	10	(PRN (-LRBLRB-) S (-RRBRRB-))
fragment size >= 3	21	33	(TOP (S PP , NP (VP MD VP) .))

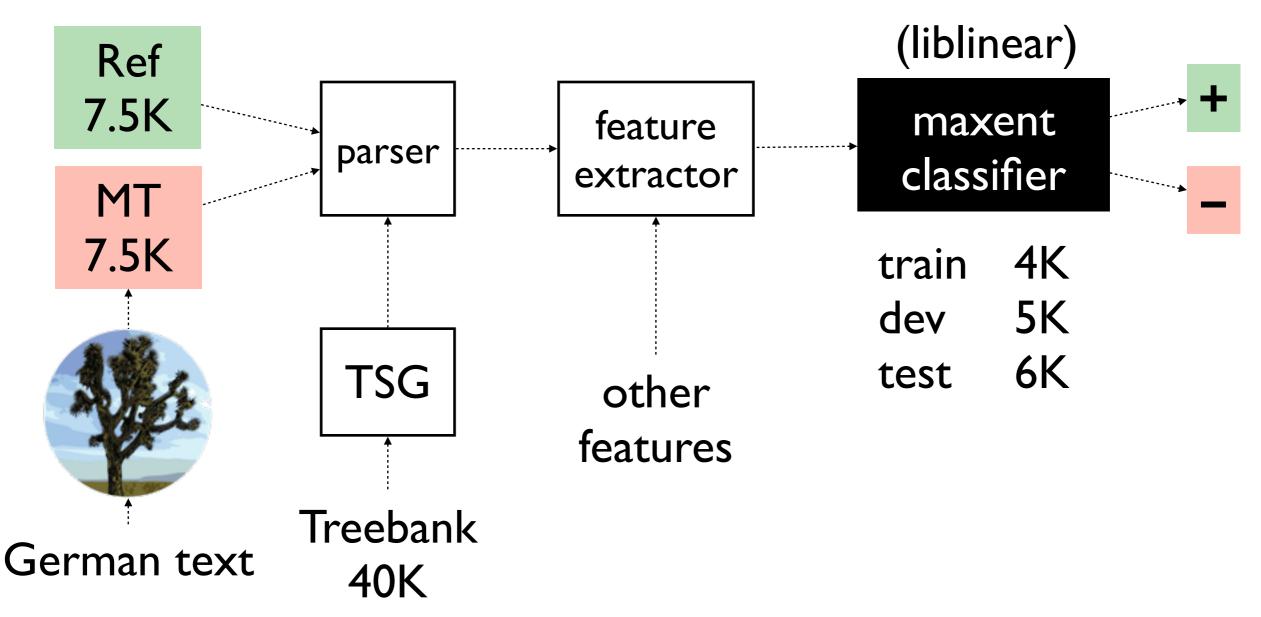
- TSGs performed well, weights are intuitive
- Shallow, unlexicalized rules correlate with ungrammaticality
- The C&J feature set performs the best, but at some cost in terms of model size

Task 2: MT output vs. human reference

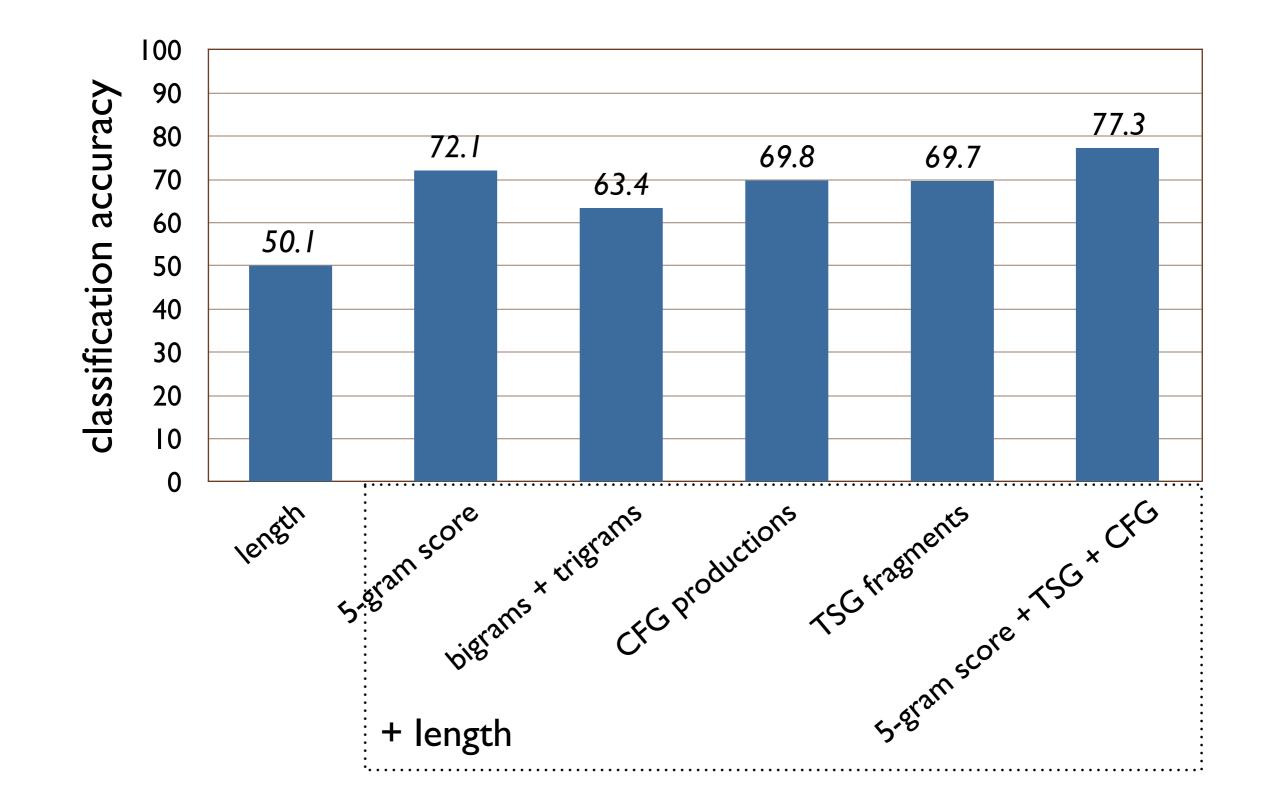
- Discriminate between MT output and a human reference translation (no access to the input)
- Some examples (MT **reference**):
 - a serious memory the weight of the past
 - at that time was warhol been dead for three years . —
 at that point in time, warhol had already
 been dead for three years.
 - if the rally actually happened, the immobiliengesellschaften benefit from it. — the constructors also will be able to benefit from this rally, in case it happens.

Experiments

Following Cherry & Quirk (2008):



Classification results



Observations

- TSG features alone didn't beat the baseline (as before), but were very complementary with the n-grams
 - But note that the n-gram model was used to produce the output in the first place

Closing observations

- Language is very complex, and we don't know the rules (although we use them every day)
- Modeling always involves compromises
 - N-grams are wrong! But quite useful in accounting for local fluency
 - Similarly, CFGs are also wrong! But minor variations informed by linguistics can produce useful models that help account for global structure
- The use of syntax (for language modeling) in production systems is likely a ways off