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Syntax-based 
Language Modeling

April 12, 2012

many of today’s examples were taken from
Syntactic Theory: A formal introduction, 2nd Ed (Sag, Wasow, & Bender)



Today’s goals

• Review some issues with MT output

• Examine past approaches to incorporating syntax

• ...in speech recognition

• ...in machine translation

• Understand how linguists approach grammars and the critical 
ways standard CFGs differ from them

• Look into current language modeling work
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Evaluating translation
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adequate not adequate

fluent

disfluent

we have a common 
understanding we do not agree

have an agreement
them owning 
compatibility

• Adequacy (faithfulness): was the meaning preserved?

• Fluency (grammaticality): is the sentence well-formed?

• 我们 有 一个 共同 的 认识



Poor grammar is common
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• still to define who is the winner

• not to mention of the parades . 

• certainly will not regret , 
because the clothes that feels 
perfectly is invaluable .

• begins a new era of crisis

• the study shows that in the 
families of obese children are 
consumed much more often the 
drink chips .

• survey to 900 children

• it is time to define the winners .

• not to mention fashion shows .

• you will definitely not regret the 
investment , as perfectly fitting 
clothes are priceless .

• new era of crisis commences

• a survey has shown that fries are 
consumed more often in the 
families of obese children .

• the research was performed 
among 900 children .

MT output human reference



Poor grammar can obscure meaning
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of games of this kind can not be expected that recreated 
with deformities and collisions complicated , but in fact 
before a coup against any object , you can not predict how 
will your car , so not everything is in order .

reference:
from a game of this type , one does not expect complicated 
deformations and collisions , but when you have no idea , 
before crashing into any object , how your car will act , 
something is not right .



Another example
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not to stand in the passive listening and put something in 
place , we have learned of the suela shoes .

reference:
to have some change from listening , and gain some practical 
experience , we learned how to properly underlay shoe soles .



Why is the output so disfluent?
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• One reason: we’re not even modeling the grammar

• N-grams condition the probability of a word based on the 
previous n-1 words, but it is easy to show this is problematic:

	

 The dog bit the goat.	

 	

 	

 	

 	

 	

 	

 	

 P(bit | dog)

	

 The dog with the missing eye bit the goat	

 	

 P(bit | eye)

• With no concept of sentence structure (an intervening PP), 
the n-gram model fails here



Why is the output so disfluent?
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• Review: options for encoding languages

• Lists

• Regular expressions

• Context-free grammars

• Context sensitive grammars

• Unrestricted grammars

• N-grams are essentially lists!

• So let’s model structure!



Syntax-based LMs for ASR
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• Speech recognition is like MT but without reordering

• the translation model describes how acoustic signals get 
translated into phoneme and then words

• the language model selects among the alternatives

• Since hypotheses are generated left-to-right, this integrates 
fairly naturally with ngrams.



Syntax-based LMs for ASR
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• Chelba & Jelinek (1998) proposed a model that maintains 
constituents as part of the hypothesis representation

• When predicting words, we can now condition them on the 
labeled heads instead of just the previous few words

the  contract  ended  with  a  loss  of  7  cents  after
DT NN VBD IN DT NN IN CD NN

NP/contract

VP/ended



Syntax-based LMs for MT
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• Charniak, Yamada, & Knight (2003): string-to-tree decoding

• Words are translated and parsed at the same time

• The dynamic programming forest is the rescored with the 
Charniak parser

• Charniak parser

• state-of-the-art bilexical context-free parser



Bilexical parsing models

• So far, our CFG rules have looked like this:

	

 S → NP VP

• But this isn’t nearly detailed enough.  Why not?

• Example on the board.
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Bilexical parsing models

• Annotates CFG productions with head words

	

 	

 S → NP VP

becomes

	

 	

 S/walked → NP/boy VP/walked

• Nonterminals are annotated with words that correspond to the 
constituent’s head

• You can think of such models as supplementing normal CFG 
productions with long-distance bigrams

• These bigrams capture head-argument relationships
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An example

• Also called “immediate-head” parsing models

• Here’s an example from Charniak (2001)
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Charniak, Yamada, & Knight (2003)

• Part of the difficulty is a metric mismatch

• But that’s not the whole story

15

syntax TM + LM
syntax TM  only

word-based



General observations

• It is hugely expensive to incorporate syntax in this way

• The gains are marginal and come at huge expense

• (papers rarely report running time or resource 
consumption)

• Part of the reason is search, but a big part of the reason is 
also the model

16



Samples

• Grammars are supposed to define languages

• Which of these is a sample from an ngram model, and which 
from a CFG?

• the commissioner for labour , water transport the great hall of 
the people in beijing .

• Wilson Protestantism Herald Of the fire settled $ 7.52 million ” 
at financial reviews .
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5-gram LM

latent variable PCFG 
(Petrov et al., 2006)



Syntax in language

• Studying the structure of a language is an interesting empirical 
task!

• It treats inherent, inscrutable linguistic judgments of native 
speakers as the gold standard!

	

 It is April 12.
 *	

It are April 12.

• Syntacticians form hypotheses about a language generalization 
and then test it by looking for examples and counterexamples
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Syntax as science: An example

• *	

We like us.
	

 We like ourselves.
	

 She likes her.
	

 She likes herself.
	

 Nobody likes us.
*	

Leslie likes ourselves.

• Hypothesis 1: A reflexive pronoun can appear in a clause if that 
clause also contains a preceding coreferent expression.

19Example adapted from Sag, Wasow, & Bender, itself borrowed from David Perlmutter.



Syntax as science: An example

• Hypothesis 1: A reflexive pronoun can appear in a clause if that 
clause also contains a preceding coreferent expression.

• But what about:
	

 Our friends like us.
*	

Our friends like ourselves.
	

 Those pictures of us offended us.
*	

Those pictures of us offended ourselves.

• Hypothesis 2: A reflexive pronoun must be an argument of a verb 
that has another preceding argument with the same referent.

20Example adapted from Sag, Wasow, & Bender, itself borrowed from David Perlmutter.



English linguistic phenomena

• What are some other facts about language that we would like 
to encode?

Come up with a small list with your neighbor.
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English linguistic phenomena

• Unbounded productivity

• Categories of words (noun, verb, preposition)

• Constraints on word order (* taught Matt class)

• High-level patterns (subject-verb-object)

• Agreement (I eat, * I eats)

• Predicate argument structure (“give” is ditransitive)

• Patterns of inflection (past: verb + ed; gerund: verb + ing)

• Noncompositional interpretations (threw under the bus)

• Exceptions (* The dog sleeped in the hallway)

22



English linguistic phenomena
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Phenomenon ngrams
context-free 
grammars

immediate-head 
models

infinite

word categories

word order

high-level patterns

agreement

predicate-argument 
structure

morphology

✓ ✓ ✓
✓ ✓
✓ ✓
✓ ✓

✓



• There are still many phenomena not captured by these models

• The generative process assumes vastly more independence 
than is warranted

• Independence assumptions of parsers are too permissive

Problems with the models
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model task difficulties

parsers
discriminate structures 

(grammaticality assumed)
PP attachment,
coordination

language 
models discriminate strings

ensuring global 
coherence



Current work

• Current work: extending the domain of locality

• Basic idea

• Longer ngrams work by memorizing longer pieces of the 
text

• The longer the ngram you use, the more likely it is that the 
text you are producing will be grammatical

• Apply the same idea to parse trees
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In the meantime

• Desiderata

• Inference no worse than it already is 

• Weak independence assumptions

• Search informed by grammar (so that grammatical candidates 
are not pruned)

• Syntax working as a language (and not a reordering) model
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Is this sentence grammatical?

a	

 	

 b	

 	

 c	

 	

 da	

 	

 b	

 	

 c	

 	

 d
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Is this sentence grammatical?

a	

 	

 b	

 	

 c	

 	

 da	

 	

 b	

 	

 c	

 	

 d
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increased likelihood of grammaticality →

many little fragments single large fragment



Tree substitution grammars

• This idea underlies translation approaches such as Galley et 
al. (2004, 2006), who use synchronous tree substitution 
grammars with some success

• But those fragments are learned
for reordering, which
complicates their 
utility as LMs

29... PP 方面发挥 JJ NN ...
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• With TSGs, there is always a question of what fragments to use

• With ngrams, we can just use all seen ones

• There are many techniques proposed for learning good 
fragments

TSG example
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Coarse language modeling

• It’s difficult to incorporate syntax into search procedures

• We can evaluate the effectiveness of syntax on a much 
coarser level with a discriminative classification setup

• Come up with positive and negative examples (grammatical 
and ungrammatical text) 

• Train models, see which ones do the best

• This should be an easier way to evaluate models
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Two tasks
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positive negative

coarse

MT

WSJ text samples from an n-
gram model

reference 
translations

machine translation 
output



Experimental setup
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• Classification

• L2-regularized support vector classifier (liblinear)

• tune regularization tradeoff on development data

• L1-regularization for feature reporting

• Tree kernels: SVM-TK toolkit, again tuned regularization 
parameter



Feature sets

feature set example

length 17

Gigaword 5-gram LM score -12.045

bigrams and trigrams “he further praised”

CFG productions S → NP VP .

Charniak & Johnson (2005) 
reranking features

number of nodes in the parse tree
head projections

TSG (parse score, fragments, 
aggregate features)

	

 (TOP (S NP 
	

 	

 	

 (VP VBD said) 
	

 	

  	

 	

 NP SBAR) .)
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Task 1: ngram samples from real text

To and , would come Hughey Co. may be crash 
victims , three billion .

The most troublesome report may be the August 
merchandise trade deficit due out tomorrow . 

BAD

GOOD

§24 #2
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Experimental setup

TSG

maxent
classifier

Treebank
40K

ngram
model

BLLIP
450K

BLLIP
56K

parser
samples
56K train	

 100K

dev	

     6K
test  	

     6K

(liblinear)

feature 
extractor

other
features

+

–
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• Following Cherry & Quirk (2008):



+ length

Classification results
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What features are helpful?
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BADGOOD

(NP (NP DT CD (NN %)) PP)
(NP DT)
(PP (IN of))
[failed parse]
(TOP (NP NP PP PP .))
(NP DT JJ NNS)
(TOP (NP NP PP . ''))
(TOP (S NP , NP VP . ('' '')))
(VP PP)
(PP (IN with))

(TOP (S `` S , '' NP (VP (VBZ says) ADVP) .))
(FRAG (X SYM) VP .)
(PRN (-LRB- -LRB-) S (-RRB- -RRB-))
(PRN (-LRB- -LRB-) NP (-RRB- -RRB-))
(S NP VP .)
(SBARQ WHADVP SQ (. ?))
(NNP Mr)
(PRN (COLON --) PP (COLON --))
(NNP Sons)
(WHNP WP$ NN NN)



Analysis
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• What kinds of features are useful?

• Looking at the 100 top- and bottom-weighted features

bad good example

unary 
productions

lexicalized 
fragments

bilexicalized 
fragments

fragment 
size >= 3

47 36 NP → DT

37 60 (SBARQ WHADVP SQ (. ?))

1 10
(PRN (-LRB- -LRB-) 

               S (-RRB- -RRB-))

21 33
	

 (TOP 
	

   (S PP , NP (VP MD VP) .))



Observations

• TSGs performed well, weights are intuitive

• Shallow, unlexicalized rules correlate with ungrammaticality

• The C&J feature set performs the best, but at some cost in 
terms of model size
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• Discriminate between MT output and a human 
reference translation (no access to the input)

• Some examples (MT — reference):

• a serious memory — the weight of the past

• at that time was warhol been dead for three years . —
at that point in time , warhol had already 
been dead for three years .

• if the rally actually happened , the 
immobiliengesellschaften benefit from it . — the 
constructors also will be able to benefit 
from this rally , in case it happens .

Task 2: MT output vs. human reference

41



• Following Cherry & Quirk (2008):

Experiments

TSG

maxent
classifier

Treebank
40KGerman text

Ref
7.5K

parser
MT
7.5K train	

  4K

dev	

  5K
test	

  6K

(liblinear)

feature 
extractor

other
features

+

–
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+ length

Classification results
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Observations

• TSG features alone didn’t beat the baseline (as before), but 
were very complementary with the n-grams

• But note that the n-gram model was used to produce the 
output in the first place
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Closing observations

• Language is very complex, and we don’t know the rules 
(although we use them every day)

• Modeling always involves compromises

• N-grams are wrong!  But quite useful in accounting for 
local fluency

• Similarly, CFGs are also wrong!  But minor variations 
informed by linguistics can produce useful models that help 
account for global structure

• The use of syntax (for language modeling) in production 
systems is likely a ways off
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