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The Noisy Channel

-logp(gle) | e

-log p(e)
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As a Linear Model
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Improvement |:

change W to find better translations
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As a Linear Model
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Improvement 2:
Add dimensions to make points separable




Linear Models

e’ = arg max w h(g,e)
® |Improve the modeling capacity of the noisy
channel in two ways
® Reorient the weight vector
® Add new dimensions (newfeatureg
® Questions
® What features! h(g,e)

® How do we set the weights! w



Parameter Learning
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Hypothesis Space
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Hypothesis Space
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Preliminaries

We assume a decoder that computes:

¢! [a']" = arg mc'i%(#vv$ h(g, e,|a)
e

And K-best lists of, that is:

{(ei [ai) = =arg it“-[r;a@2¥§w$ h(g, e/a)

Standard, efbcient algorithms exist for this.



Cost-Sensitive Training

® Assume we have a cost function that gives
a score for how good/bad a translation is

1(6,E) " [0,1

® Optimize the weight vector by making
reference to this function

® We will talk about two ways to do this
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MERT

Minimum Error Rate Training

Directly optimize for an automatic evaluation
metric instead of likelihood

Maximize the BLEU score on a held out
development set

Iteratively update the parameters by re-
scoring n-best lists and comparing the highest
scoring translation to the reference
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MERT

® Even with |10-15 features it’s not possible to
exhaustively search the space of possible
feature values

® We need a good heuristic method to
search the space

® Another problem: the initial parameters
might be so bad that the original n-best list
is not a good sample of the translations
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Iterative parameter
tuning
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Powell Search

Explore a high-dimensional space by finding
a better point along one line in the space

Simplest form: Vary one parameter at a time

If the optimal value is better than the
current value, then change it and move to
the next parameter

Iterate until there are no single parameter
updates that increase the score



Powell Search

® Problem: searching for the best value for a
single parameter is still daunting

® Parameters are real-valued #s, so they
have an infinite number of possible values

® Key insight of MERT: only a small number of
threshold values will change the |-best
translation

® Only |-best translations change BLEU



Finding the threshold
points for | sentence

Given weight vector w, any hypothesis !e,a" !
will have a (scalar) score m = w’ h(g, e, a)

Now pick a search vector v, and consider!
how the score of this hypothesis will change:

Whew = W + 1V
m=(w + !v) h(g,e,a)
= w' h(g,e,a)+! v' h(g,e,a)

— —
b a

Linear function in 2D!



MERT



MERT
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Recall our k-best set {{ej,a; )}i;
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MERT
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Recall our k-best set {{ej,a; )}i;
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MERT
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Let

W hew

errors

'V + W
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The effect on BLEU
varying one parameter
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The effect on BLEU
varying one parameter
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MERT

® Minimum error rate training
® Can maximize or minimize!

® |n practice “errors’ are sufficient statistics
for evaluation metrics (e.g., BLEU, AMBER,
TER, etc)

® Downside: MERT can only be used to
optimize a small handful of features
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Training as Classification

® Pairwise Ranking O ptimization

. o3 N T )
® Reduce training problem to binary classiPcCationwith a
linear model

e Algorithm
® Fori=| to N
® Pick random pair of hypotheses (A,B) from K-best list
® Use cost function to determine if is A or B better
® Create Ith training instance

® Train binary linear classifier
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K-Best List Example
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K-Best List Example

e 0.8!
e 0.6!
o 0.4
e 0.2

e 0.0!

l < 1.0
l < 0.8
l < 0.6
1 < 04
l < 0.2
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.#5

#7

(0)
© Better!
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Fit a linear model
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Fit a linear model
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K-Best List Example

e 08! < 10
e 06! 1< 0.8
0 04! 1 < 0.6
e 0.2! '< 04

e 00! 1< 0.2
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Summary

® Evaluation metrics
® Figure out how well we're doing
® Figure out if a feature helps
® Train your system
® What'’s a great way to improve translation!?

® Improve evaluation!
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Reading

® Read chapter 9 from the
textbook

e HW4 will be a & Translatic
discriminative re-ranking e
project




Announcements

® HWV3 has been released. It is due a week
from Thursday.

® Upcoming:

® Term project (25% of your final grade) and
the language research project (10%)

® These are group projects (2-6 students),
where the work scales to the group size

® Specifications will be posted soon



Term project

Problem description — similar to the
descriptions on the HWV assignments

Data collection — used to train a model,
and evaluate its performance

Objective function — score submissions on
a leaderboard

Default system — An implementation of
the simplest possible solution

Baseline system— An implementation of a
published baseline



Language Research

Gather monolingual and bilingual data for
the language

Investigate where it is spoken, and what
other languages its speakers are exposed to

Collect information about the syntax and
morphology of the language

Describe its writing system

Create your own NLP tools for the
language (# will vary by team size)



