Introduction to
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Lecture 2

Instructor: Chris Callison-Burch
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http://mt-class.org/penn

Last time ...

1) Formulate a@odel of pairs of sentences.
2)\Eearn an instance of the model from datd.
3) Use it to|iefer translations of new inputs.



Why Probability?

® Probability formalizes ...
® the concept of models
® the concept of data
® the concept of learning

® the concept of inference (prediction)

P Probability is expectation founded
o ) upon partial knowledge.



p(x | partial knowledge)

“Partial knowledge” is an apt description of
what we know about language and translation!



Probability Models

® Key components of a probability model

® The space of events ({) or S)

® The assumptions about conditional
independence / dependence among events

® Functions assigning probability (density) to
events

® \We will assume discrete distributions.



Events and Random Variables

A random variable is a function from a random event

from a set of possible outcomes (£2) and a probability

distribution (p), a function from outcomes to
probabilities.

0 =1{1,2,3,4,5,6)
X(w)=w

ifr=1,2,3,4,5,6

otherwise
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Events and Random Variables

A random variable is a function from a random event

from a set of possible outcomes (£2) and a probability

distribution (p), a function from outcomes to
probabilities.

0 =1{1,2,3,4,5,6)

Y (w) = {0 if we {2,4,6)

1 otherwise

.

0 otherwise



What is our event space!

What are our random
variables!?



Probability Distributions

A probability distribution (px) assigns probabilities to
the values of a random variable (X).

There are a couple of philosophically different ways
to define probabilities, but we will give only the invariants
in terms of random variables.

> px(z) =1

reX
px(x) >0 VerelX

Probability distributions of a random variable may be
specified in a number of ways.



Specifying Distributions
® Engineering/mathematical convenience
® |mportant techniques in this course

® Probability mass functions

® Tables (“stupid multinomials™)

® | og-linear parameterizations (maximum
entropy, random field, multinomial logistic
regression)

® Construct random variables from other r.v.s
with known distributions



Sampling Notation

r=4xz+1.7

f Expression
Variable



Sampling Notation

r=4xz+ 1.7
y ~ Distribution(0)
f Distribution \

Random variable Parameter



Sampling Notation

y ~ Distribution(6)
Yy =y X



Multivariate r.v.s

Probability theory is particularly useful because it lets
us reason about (cor)related and dependent events.

A joint probability distribution is a probability
distribution over r.v.s with the following form:

Z PZ(?j)Zl ,OZ(x)ZO Vee X,yel

reX,ye)y
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px.y(x,y)
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Marginal Probability

p(X =Y =y) = px(z,y)
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if (z,y) € Q)
otherwise
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Conditional Probability

The conditional probability of one random variable given
another is defined as follows:

p(X =zY =y joint probability

p(Y = y) marginal
Given that p(y) # 0

Conditional probability distributions are
useful for specifying joint distributions since:

p(z | y)p(y) =p(z,y) =p(y | 2)p(x)
Why might this be useful?



Conditional Probability
Distributions

A conditional probability distribution is a
probability distribution over r.v.s X andY with the

form PX|Y =y (ZIZ')



Chain rule

The chain rule is derived from a repeated application
of the definition of conditional probability:

p(a7 b? C? d)

Use as many times as necessary!



Bayes’ Rule

Likelihood

Posteri<‘A \ Prior
_p(ny)p({ p(y | z)p(x)
Pl =00 ( > 1y | &)p(@ >>

\

Evidence



Independence

Two random variables are independent iff
p(X =Y =y) =pX =2)p(Y =y)

Equivalently, (use def. of cond. prob to prove)
p(X =z|Y =y)=pX =z

Equivalently again:
p(Y =y | X =1z)=pY =y)

“Knowing about X doesn’t tell me about Y”



if (z,y) € Q
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Independence

Independence has practical benefits. Think about
how many parameters you need for a naive
parameterization of px.v(7,¥y) vs px(z)and py (y)

O(xy) vs O(x +y)



Conditional Independence

Two equivalent statements of conditional
independence:

p(a,c|b) =p(a|b)p(c|b)
and:
p(a | b,c) =p(a|b)

“If | know B, then C doesn’t tell me about A”



Conditional Independence

p(a,b,c) = p(a | b,c)p(b, c)
= p(a | b,c)p(b | ¢)p(c)
“If | know B, then C doesn’t tell me about A”
p(a|b,c)=p(a|b)

p(a,b,c) = p(a | b,c)p(b,c)
= p(a | bye)p(b | c)p(c)
=p(a | b)p(b| c)p(c)

Do we need more parameters or fewer
parameters in conditional independence?



Independence

® Some variables are independent In Nature

® How do we know!

® Some variables we pretend are independent for
computational convenience

® Examples?

® Assuming independence is equivalent to letting our
model “forget” something that happened in its past

® What should we forget in language!?



A Word About Data

® VWhen we formulate our models there will
be two kinds of random variables: observed
and latent

® Observed: words, sentences(?), parallel
corpora, web pages, formatting...

® |atent: parameters, syntax, ‘meaning’’,
word alignments, translation
dictionaries...



In der Innenstadt explodierte eine Autobombe A car bomb exploded downtown




Observed

Garcia and associates . the clients and the associates are enemies .

Garcia y asociados . los clientes y los asociados son enemigos .

Carlos Garcia has three associates . the company has three groups .
Carlos Garcia tiene tres asociados . la empresa tiene tres grupos .
his associates are not strong . its groups are in Europe .
sus asociados no son fuertes . sus grupos estan en Europa .
Garcia has a company also . the modern groups sell strong pharmaceuticals .|
Garcia tambien tiene una empresa . |los grupos modernos venden medicinas fuertes .

its clients are angry . the groups do not sell zanzanine .

sus clientes estan enfadados . los grupos no venden zanzanina .
the small groups are not modern .

e

the associates are also angry .

los asociados tambien estan enfadados . los grupos pequenos no son modernos .
=




Hidden

Garcia and associates .

|\ /

Garcia y asociados .

the clients and the associates are enemies .

L N A A

los clientes y los asociados son enemigos .

Carlos Garcia has three associates .

LN N A

Carlos Garcia tiene tres asociados .

r

the company has three groups .

\ ]

la empresa tiene tres grupos .

his associates are not strong

N X/

sus asociados no son fuertes .

its groups are in Europe .

[ 1\ /

sus grupos estan en Europa .

Garcia has a company also .

\ S

Garcia tambien tiene una empresa .

its clients are angry .

S/

sus clientes estan enfadados .

the modern groups sell strong pharmaceuticals .

- S

los grupos modernos venden medicinas fuertes .

the groups do not sell zanzanine .

A

los grupos no venden zanzanina .

the associates are also angry .

S/ XN\

los asociados tambien estan enfadados .

r

the small groups are not modern .

S > K )

los grupos pequenos no son modernos .




Learning

® | et’s say we have formulated a model of a
phenomenon

® Made independence assumptions

® Figured out what kinds of parameters we
want

® | et’s say we have collected data we assume to
be generated by this model

® E.g.some parallel data

What do we do now?



Parameter Estimation

® |nputs
® Given a model with unspecified parameters
® Given some data

® Goal: learn model parameters

® How!

® Find parameters that make the model make predictions
that look like the data do

® VWhat do we mean “look like the data?”’

® Probability (other options: accuracy, moment matching)



Strategies

® Maximum likelihood estimation
® What is the probability of generating the data?
® Accuracy

® Using an auxiliary similarity function, find
parameters that maximize the (expected?)
accuracy of data

® Bayesian techniques






eads)” x f(tapbhtads)]’



p(data)

p(heads)



p(data)




Optimization

® For the most part, we will be working with maximum
likelihood estimation

® The general recipe is:

® Come up with an expression of the likelihood of your
probability model, as a function of data and the model
parameters

® Set the parameters to maximize the likelihood
® This optimization is generally difficult

® You must respect any constraints on the parameters (>0,
sum to |, etc)

® There may not be analytical solutions (log-linear models)



Probability lets us

1) Formulate a@odel of pairs of sentences.
2)\Eearn an instance of the model from datd.
3) Use it to|iefer translations of new inputs.



Key Concepts

Joint probabilities

Marginal probabilities
Conditional probabilities

Chain rule

Bayes’ rule

Independence

Latent versus observed variables

Maximum likelihood estimation



Supplemental Reading

® |f this was unfamiliar to
you, then please read

Chapter 3 from the :
Translation

Statistical

Machine
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Announcements

® HW 0 has been posted on the web site.

® |t’s a setup assighment to make sure that
you can upload results, have them scored,
and that they correctly appear on the
leaderboard



