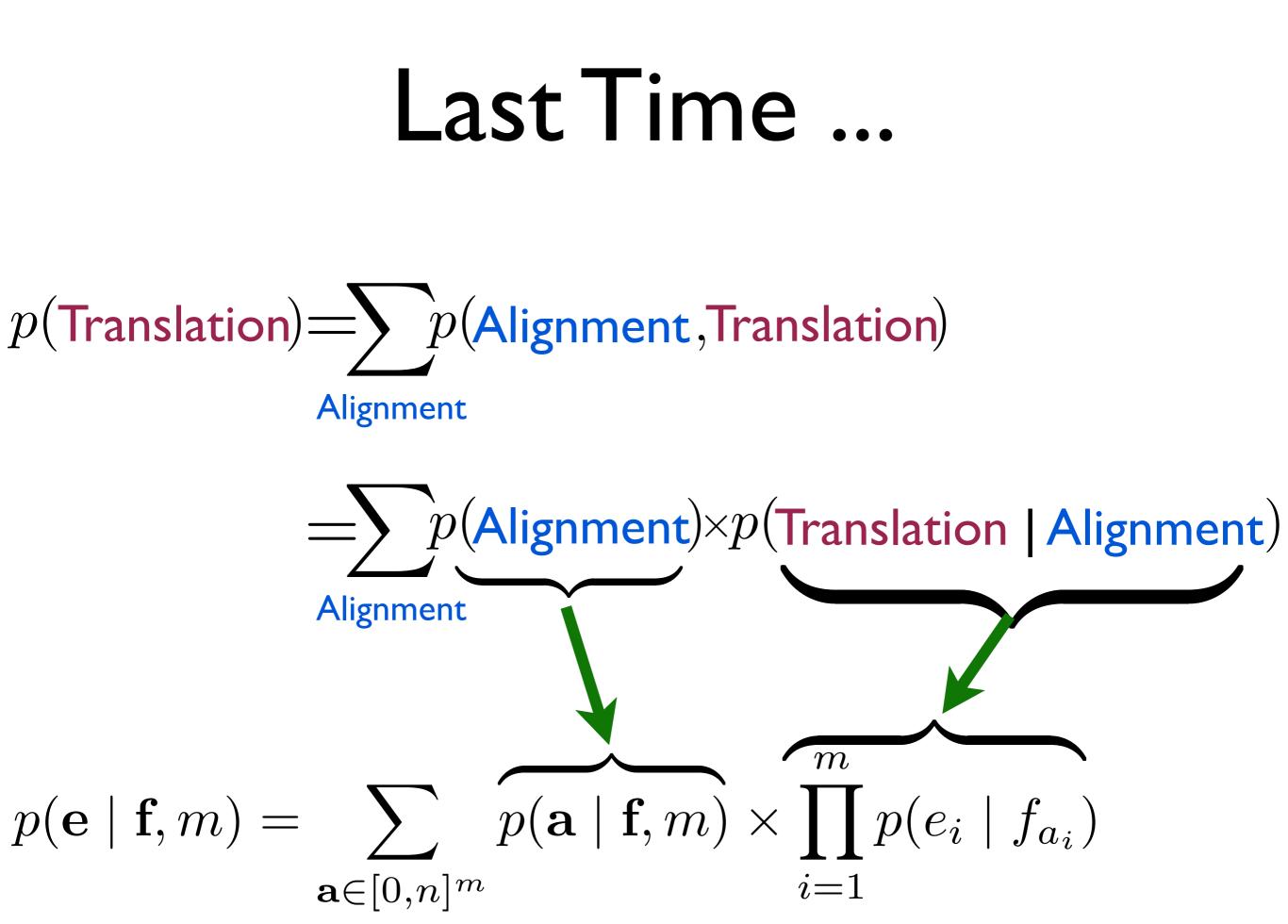
CRF Word Alignment & Noisy Channel Translation

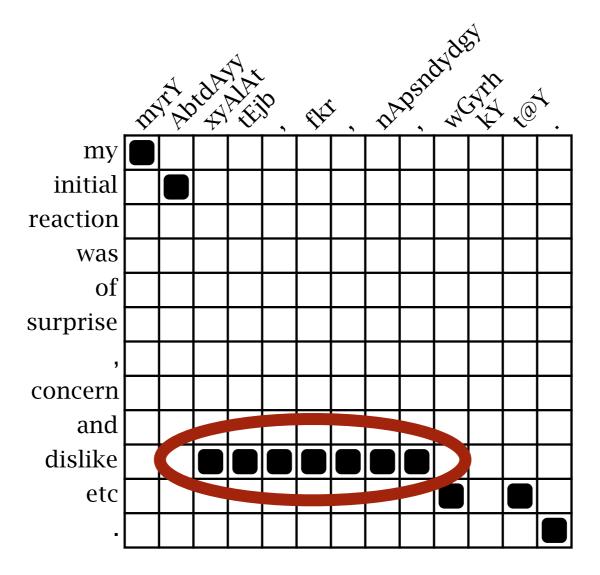
Machine Translation Lecture 6

Instructor: Chris Callison-Burch TAs: Mitchell Stern, Justin Chiu

Website: mt-class.org/penn

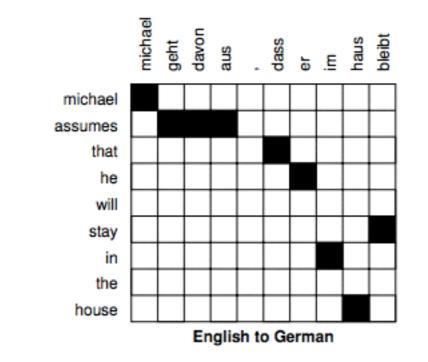


MAP alignment



IBM Model 4 alignment

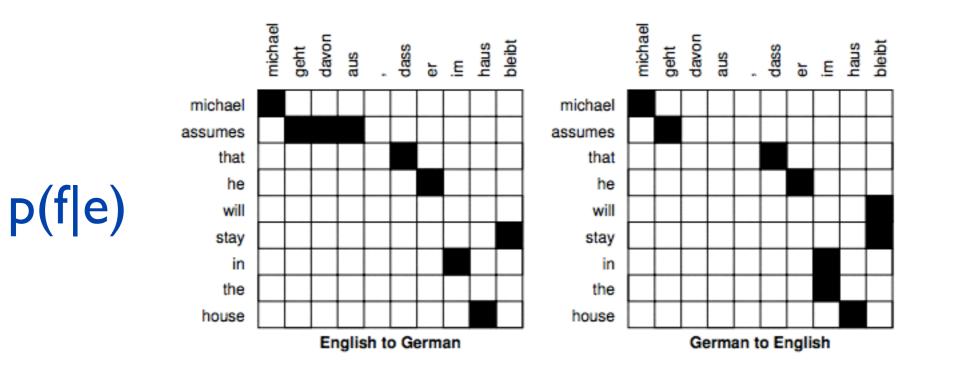
A few tricks...



p(f|e)

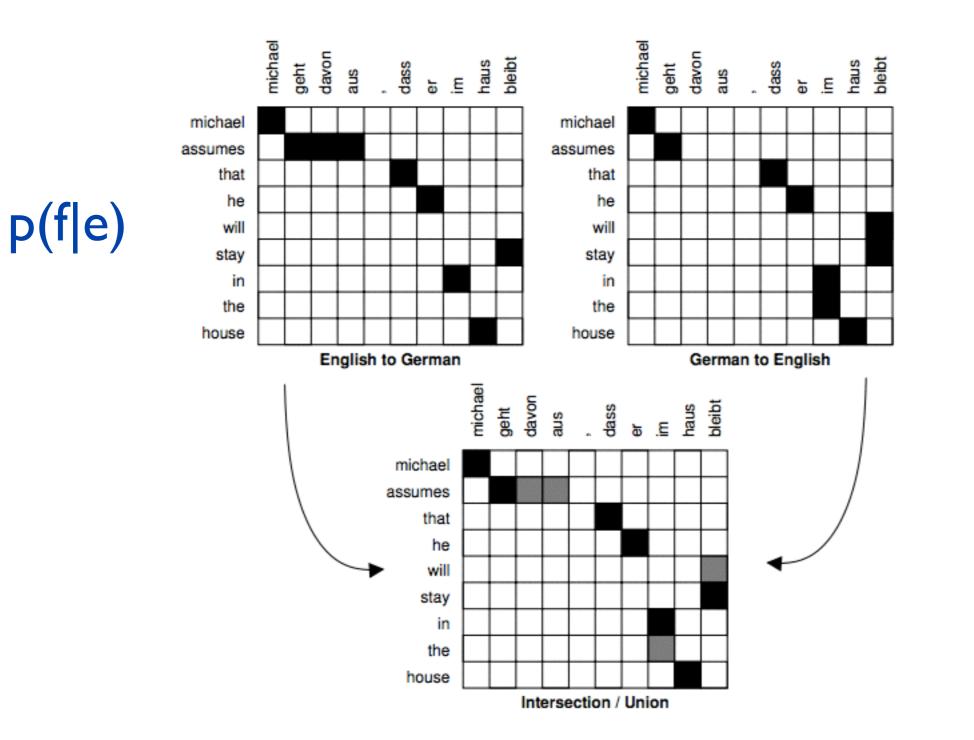
A few tricks...

p(e|f)



A few tricks...

p(e|f)



Another View

With this model:

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0,n]^m} p(\mathbf{a} \mid \mathbf{f}, m) \times \prod_{i=1}^m p(e_i \mid f_{a_i})$$

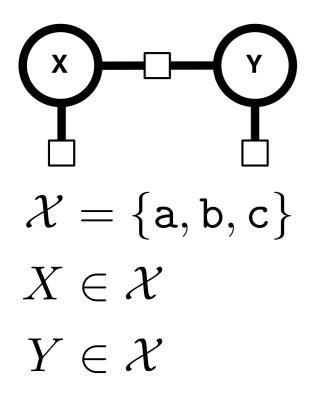
The problem of word alignment is as:

$$\mathbf{a}^* = \arg \max_{\mathbf{a} \in [0,n]^m} p(\mathbf{a} \mid \mathbf{e}, \mathbf{f}, m)$$

Can we model this distribution directly?

Markov Random Fields (MRFs)

Computing Z

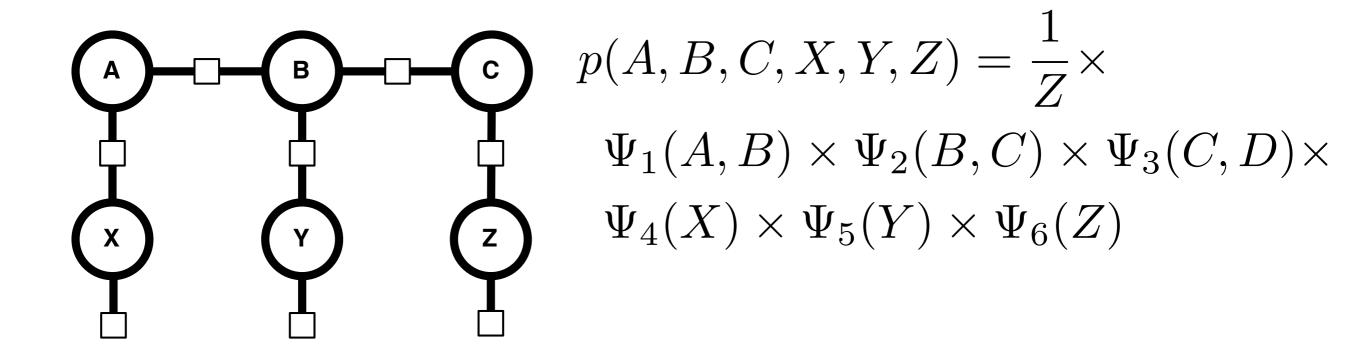


$$Z = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{X}} \Psi_1(x, y) \Psi_2(x) \Psi_3(y)$$

When the graph has certain structures (e.g., chains), you can factor to get polynomial time dynamic programming algorithms.

$$Z = \sum_{x \in \mathcal{X}} \Psi_2(x) \sum_{y \in \mathcal{X}} \Psi_1(x, y) \Psi_3(y)$$

Log-linear models



 $\Psi_{1,2,3}(x,y) = \exp\sum w_k f_k(x,y)$ Weights (learned) **Feature functions** (specified)

Random Fields

Benefits

- Potential functions can be defined with respect to arbitrary features (functions) of the variables
- Great way to incorporate knowledge
- Drawbacks
 - Likelihood involves computing Z
 - Maximizing likelihood usually requires computing Z (often over and over again!)

Conditional Random Fields

 Use MRFs to parameterize a conditional distribution. Very easy: let feature functions look at anything they want in the "input"

$$p(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z_{\mathbf{w}}(\mathbf{y})} \exp \sum_{F \in \mathcal{G}} \sum_{k} w_k f_k(F, \mathbf{x})$$
$$\int$$
All factors in the graph of y

Parameter Learning

• CRFs are trained to maximize conditional likelihood

$$\hat{\mathbf{w}}_{\text{MLE}} = \arg \max_{\mathbf{w}} \prod_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{D}} p(\mathbf{y}_i \mid \mathbf{x}_i ; \mathbf{w})$$

- Recall we want to directly model $p(\mathbf{a} \mid \mathbf{e}, \mathbf{f})$
- The likelihood of what alignments?

Gold reference alignments!

CRF for Alignment

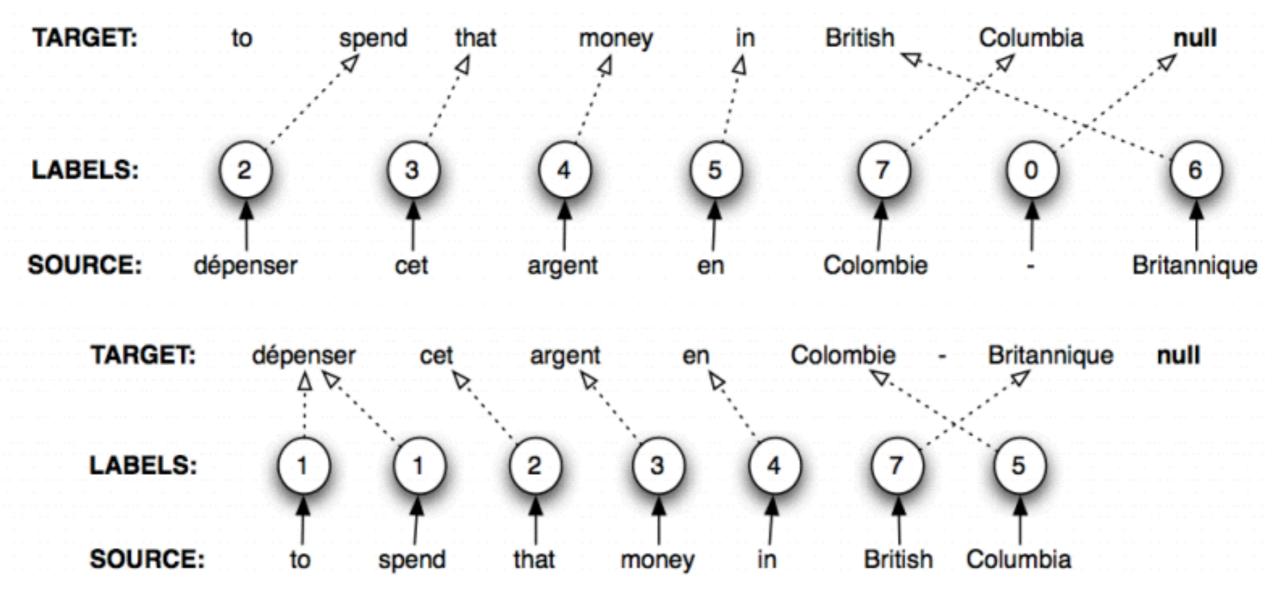
 One of many possibilities, due to Blunsom & Cohn (2006)

$$p(\mathbf{a} \mid \mathbf{e}, \mathbf{f}) = \frac{1}{Z_{\mathbf{w}}(\mathbf{e}, \mathbf{f})} \exp \sum_{i=1}^{|\mathbf{e}|} \sum_{k} w_k f(a_i, a_{i-1}, i, \mathbf{e}, \mathbf{f})$$

- a has the same form as in the lexical translation models (still make a one-to-many assumption)
- w_k are the model parameters
- f_k are the feature functions

 $O(n^2 m) \approx O(n^3)$

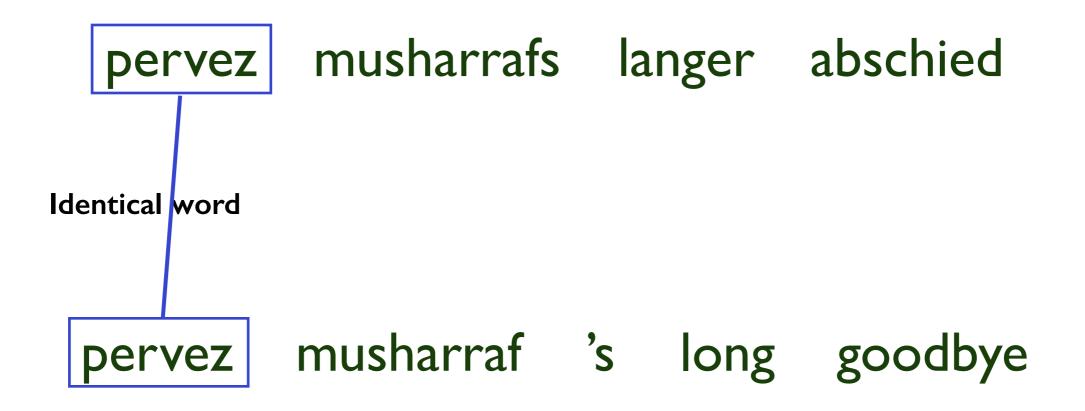
Model



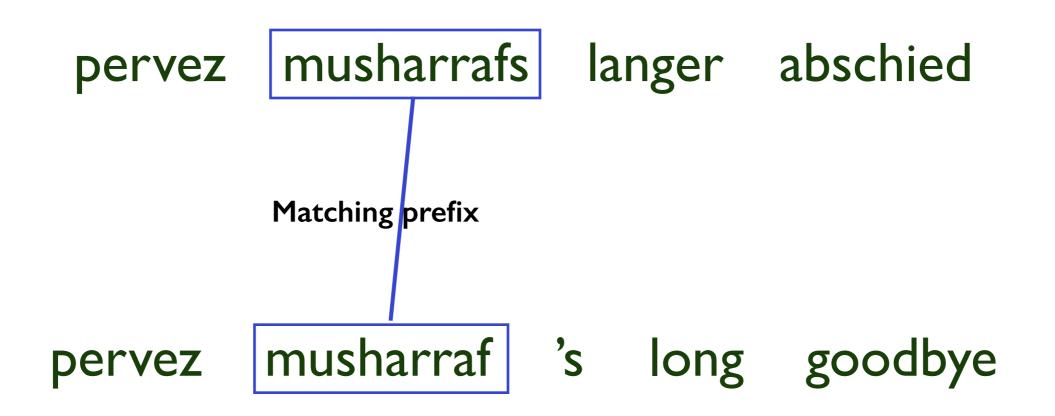
- Labels (one per target word) index source sentence
- Train model (e,f) and (f,e) [inverting the reference alignments]

Alignment Experiments

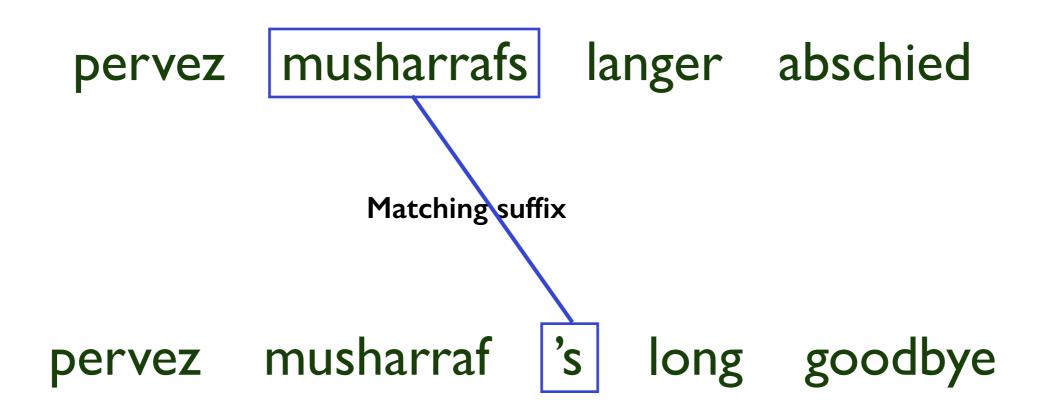
- French-English Canadian Hansards corpus
- 484 manually word-aligned sentence pairs (100 training, 37 development, 347 testing)
- I.I million sentence-aligned pairs
- Baseline for comparison: Giza++ implementation of IBM Model 4
- (Also experimented on Romanian-English)



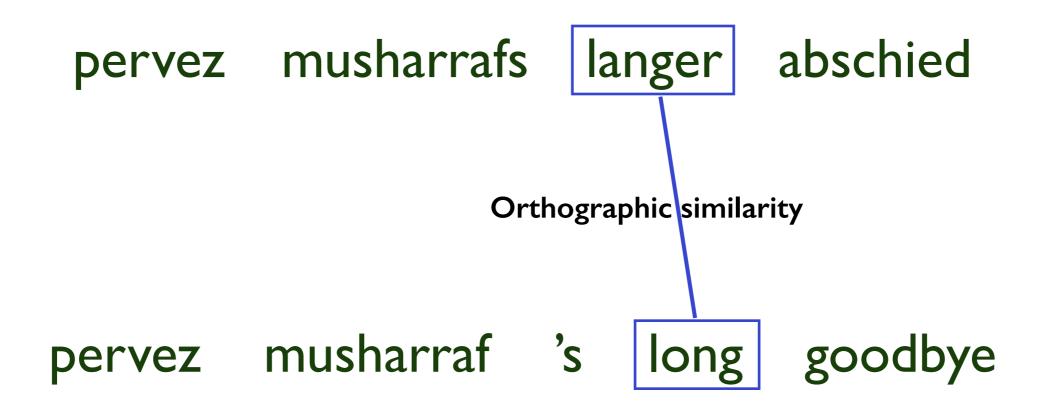
Identical word



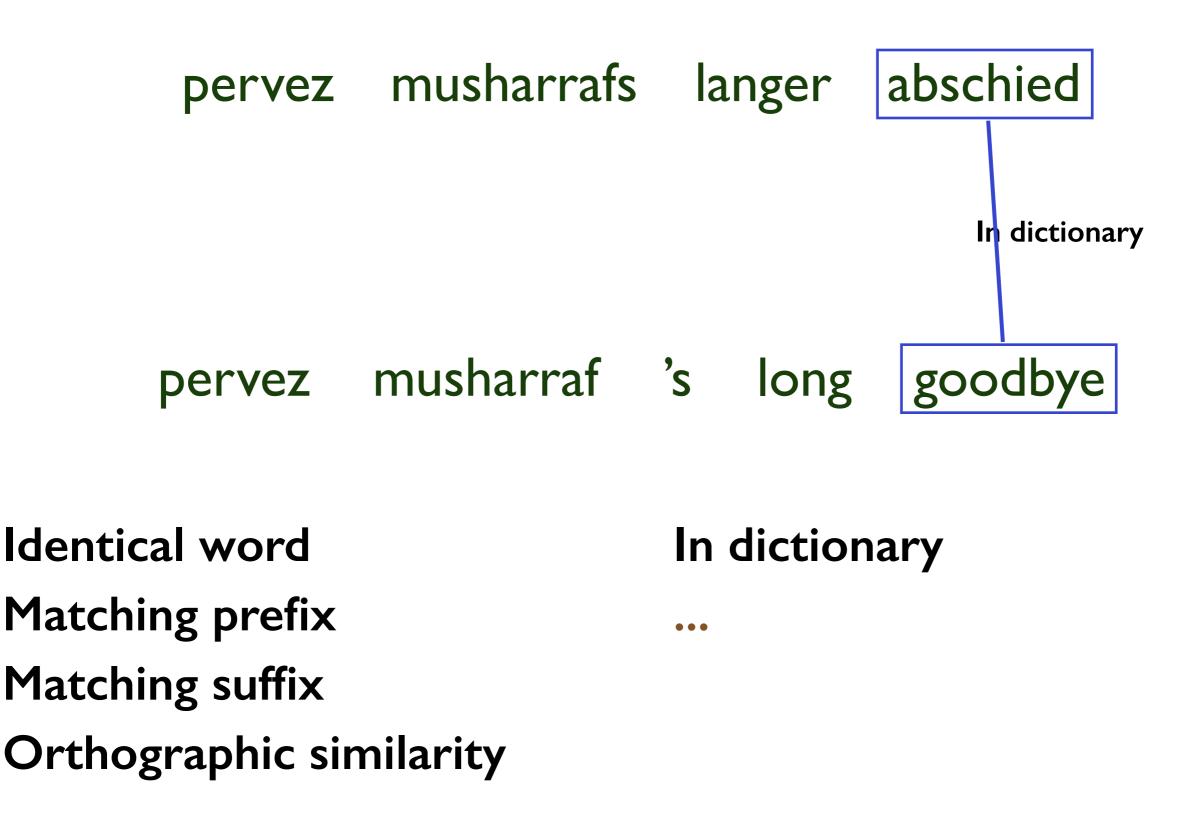
Identical word Matching prefix



Identical word Matching prefix Matching suffix



Identical word Matching prefix Matching suffix Orthographic similarity



Lexical Features

- Word↔word indicator features
- Various word↔word co-occurrence scores
 - IBM Model 1 probabilities $(t \rightarrow s, s \rightarrow t)$
 - Geometric mean of Model 1 probabilities
 - Dice's coefficient [binned]
 - Products of the above

Lexical Features

- Word class \leftrightarrow word class indicator
 - NN translates as NN (NN_NN=1)
 - NN does not translate as MD (NN_MD=1)
- Identical word feature
 - 2010 = 2010 (IdentWord=1 IdentNum=1)
- Identical prefix feature
 - Obama ~ Obamu (IdentPrefix=1)
- Orthographic similarity measure [binned]
 - Al-Qaeda ~ Al-Kaida (OrthoSim050_080=1)

Other Features

- Compute features from large amounts of unlabeled text
 - Does the Model 4 alignment contain this alignment point?
 - What is the Model I posterior probability of this alignment point?

Results

Alignment Results:

	Precision	Recall	F-score
$French \rightarrow English$	0.97	0.86	0.91
French ← English	0.98	0.83	0.91
French ↔ English	0.96	0.90	0.93
French \rightarrow English (+ibm model4)	0.98	0.88	0.93
French \leftarrow English (+ibm model4)	0.98	0.87	0.93
French \leftrightarrow English (+ibm model4)	0.98	0.91	0.95
$GIZA++$ (French \leftrightarrow English)	0.87	0.95	0.91

Summary

- CRFs outperform unsupervised / latent variable alignment models, even when only a small number of word-aligned sentences are available
- Diverse range of features can be incorporated and are beneficial to wordalignment quality
- Features from unsupervised models can also be incorporated

Unfortunately, you need gold alignments!

Putting the pieces together

• We have seen how to model the following:

 $p(\mathbf{e})$ $p(\mathbf{e} \mid \mathbf{f}, m)$ $p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m)$ $p(\mathbf{a} \mid \mathbf{e}, \mathbf{f})$

Putting the pieces together

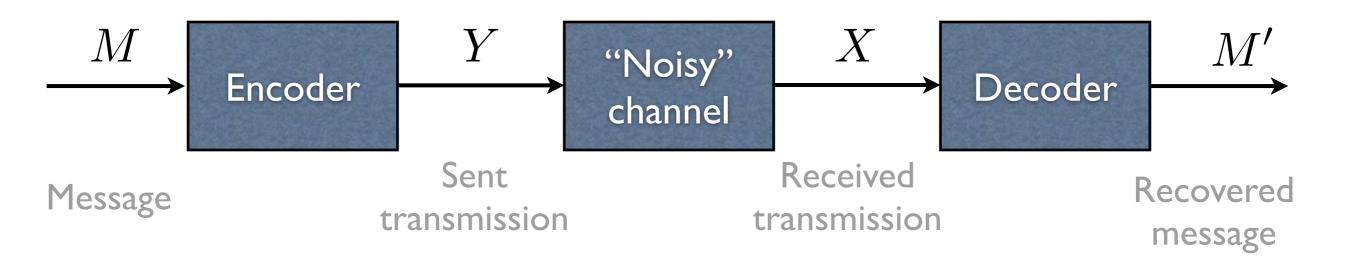
• We have seen how to model the following:

 $p(\mathbf{e})$ $p(\mathbf{e} \mid \mathbf{f}, m)$ $p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m)$ $p(\mathbf{a} \mid \mathbf{e}, \mathbf{f})$

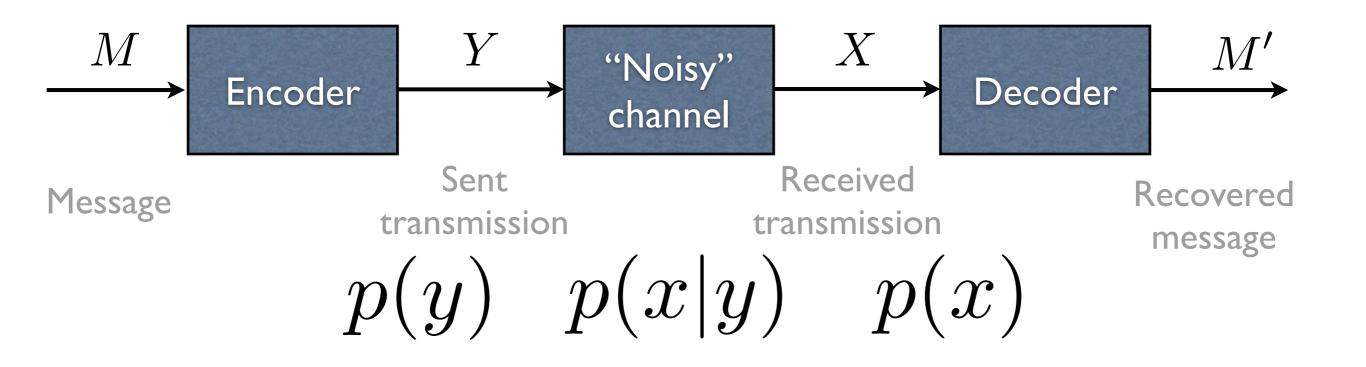
 $\bullet \,$ Goal: a better model of $\, \, p({\bf e} \mid {\bf f}, m)$ that knows about $\, p({\bf e}) \,$

One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'

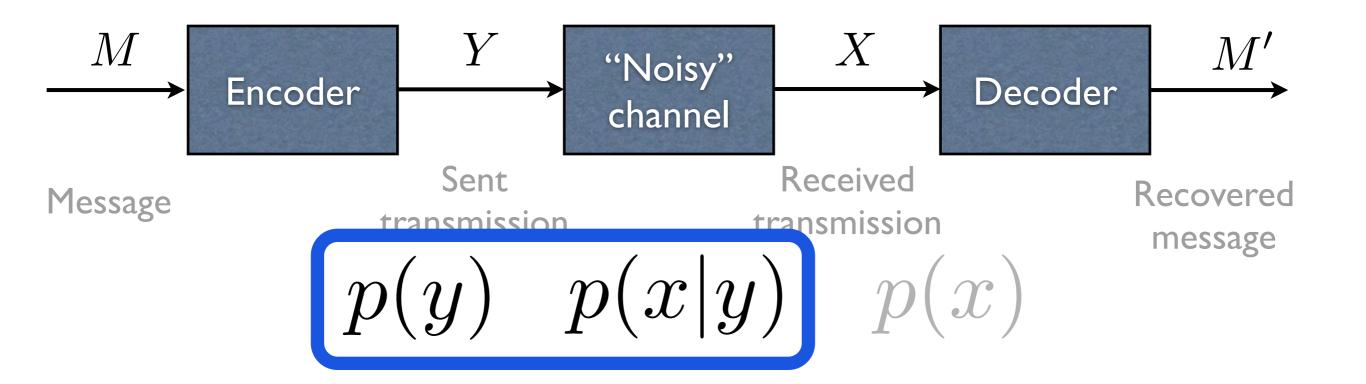
Warren Weaver to Norbert Wiener, March, 1947



Claude Shannon." A Mathematical Theory of Communication" 1948.

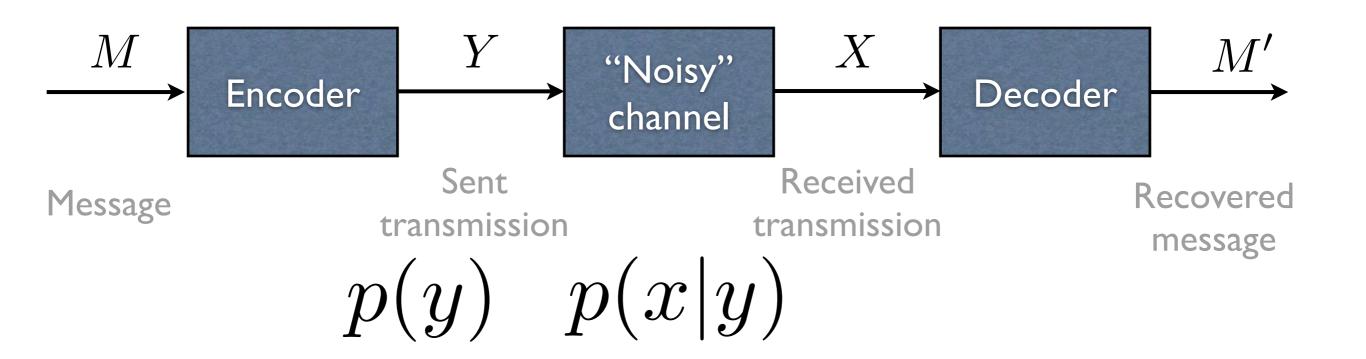


Claude Shannon." A Mathematical Theory of Communication" 1948.





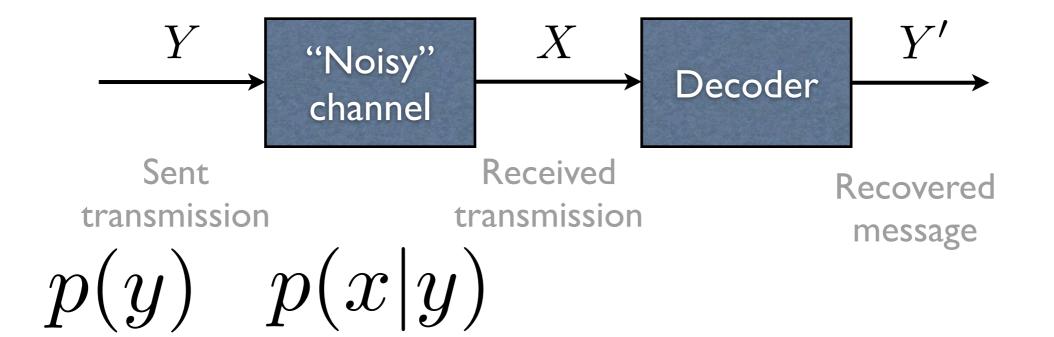
Claude Shannon." A Mathematical Theory of Communication" 1948.

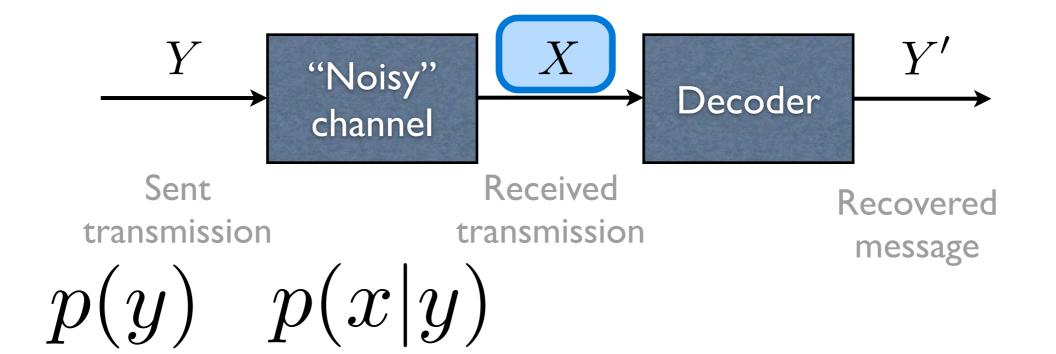


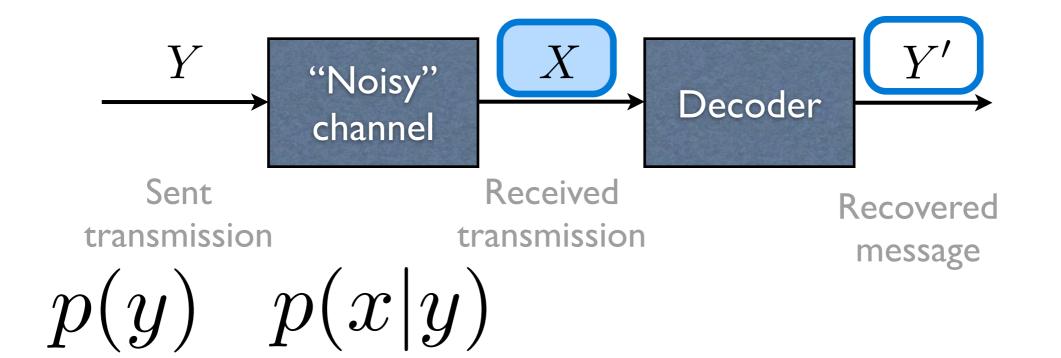
Shannon's theory tells us:

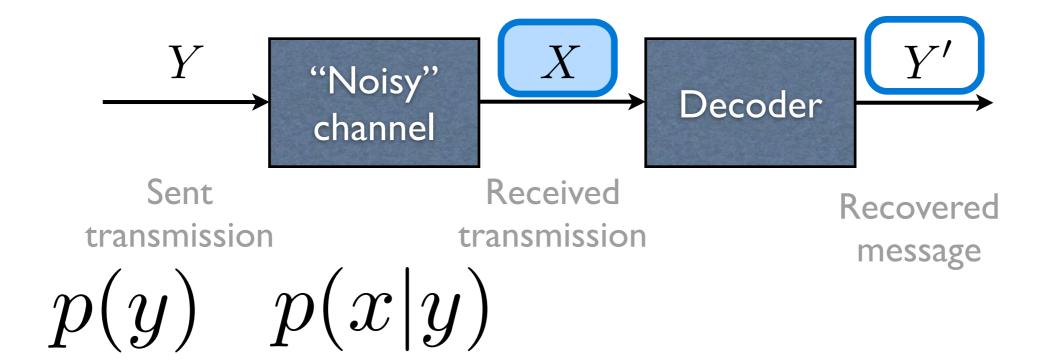
how much data you can send
the limits of compression
why your download is so slow
how to translate

Claude Shannon. "A Mathematical Theory of Communication" 1948.

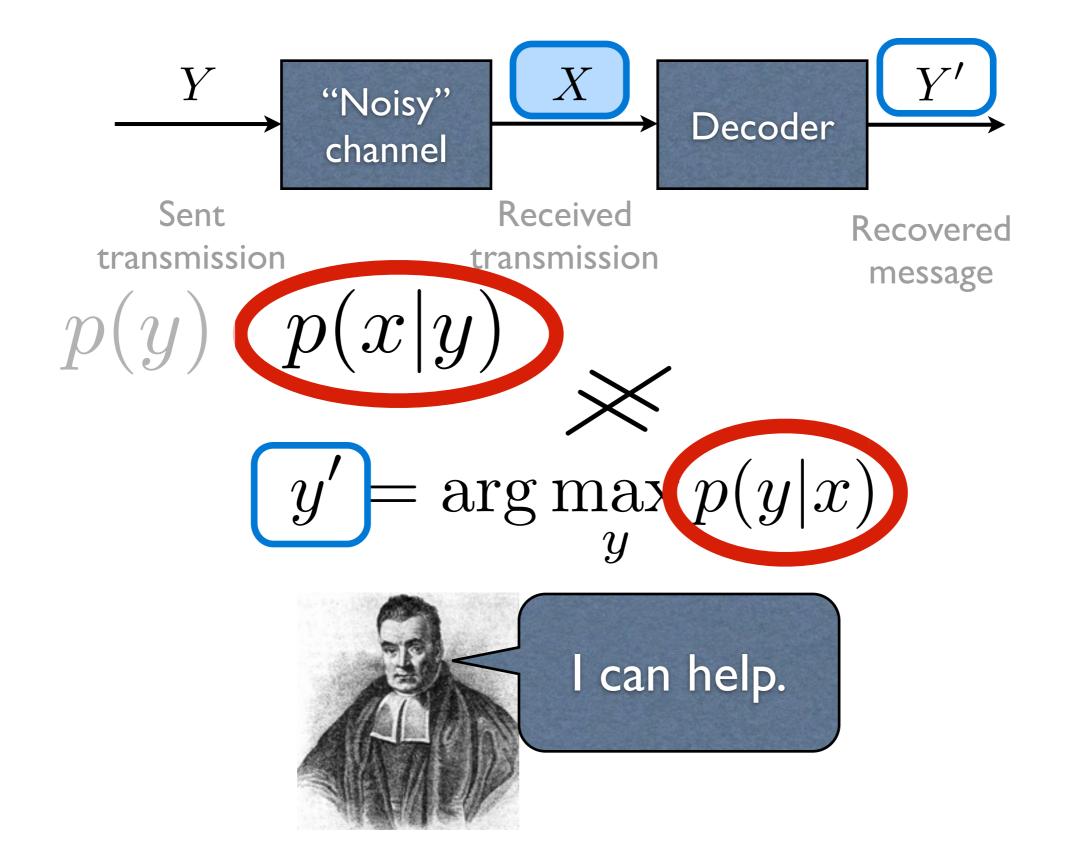


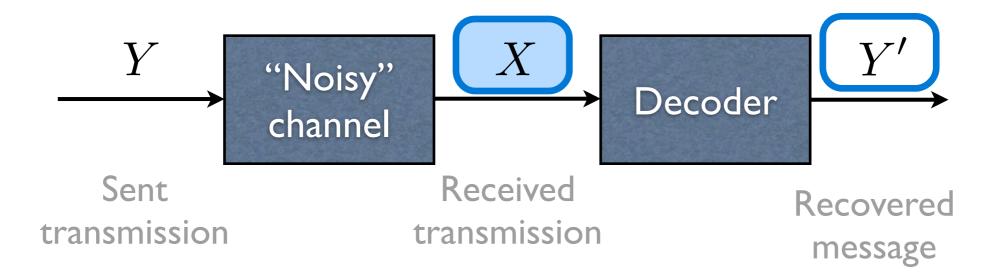




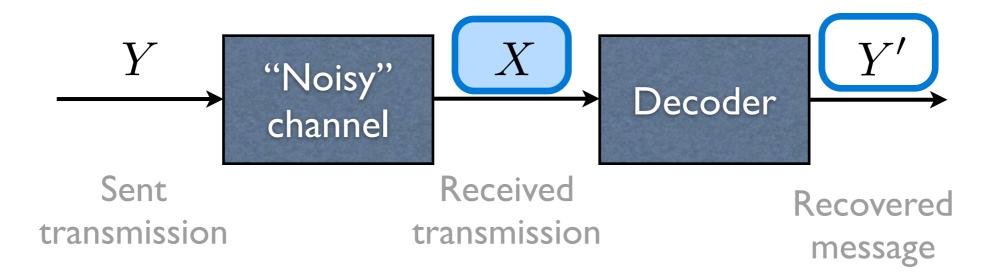


 $\arg\max_{y} p(y|x)$ y' =

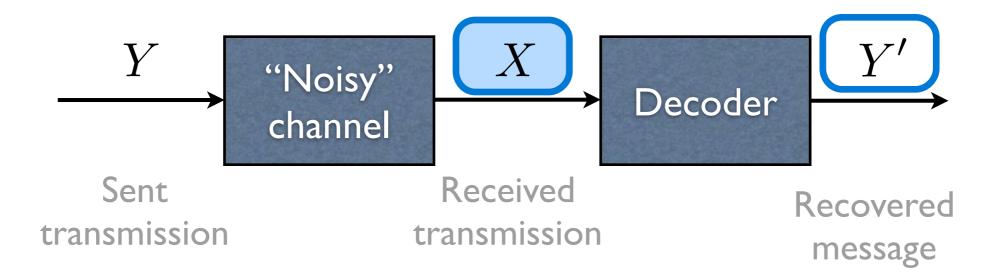




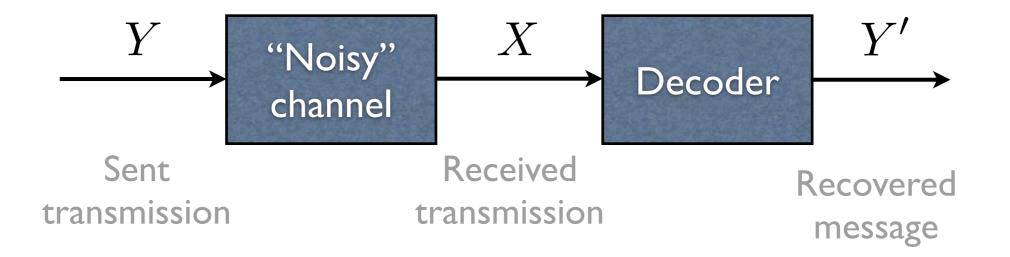
$$y' = \arg \max_{y} p(y|x)$$
$$= \arg \max_{y} \frac{p(x|y)p(y)}{p(x)}$$



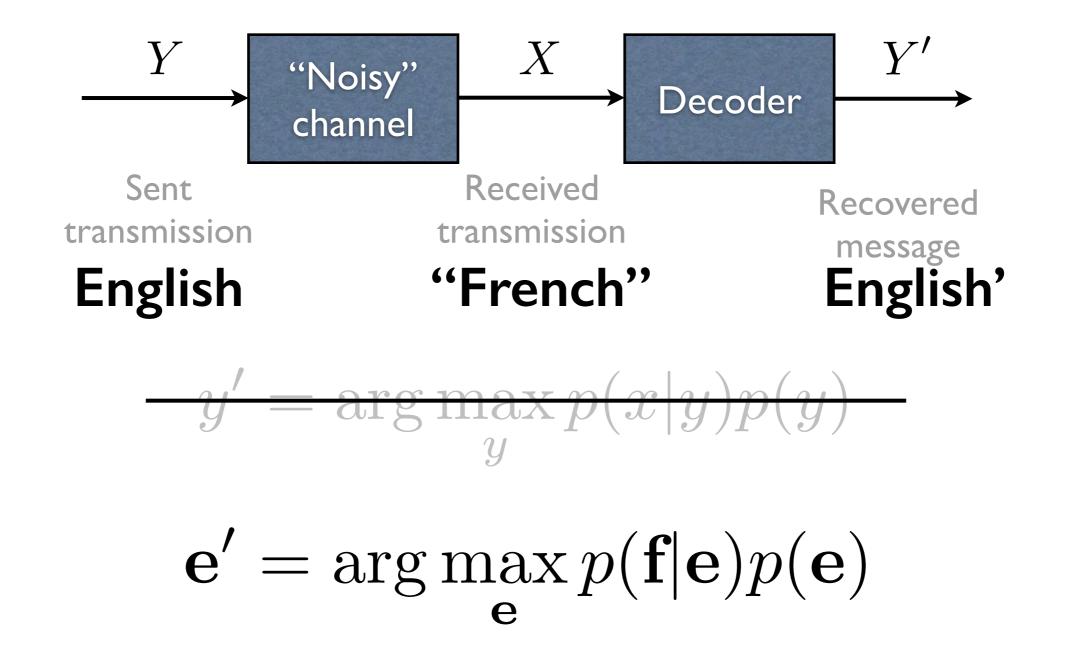
$$y' = \arg \max_{y} p(y|x)$$
$$= \arg \max_{y} \frac{p(x|y)p(y)}{p(x)}$$
Denominator doesn't depend on y .

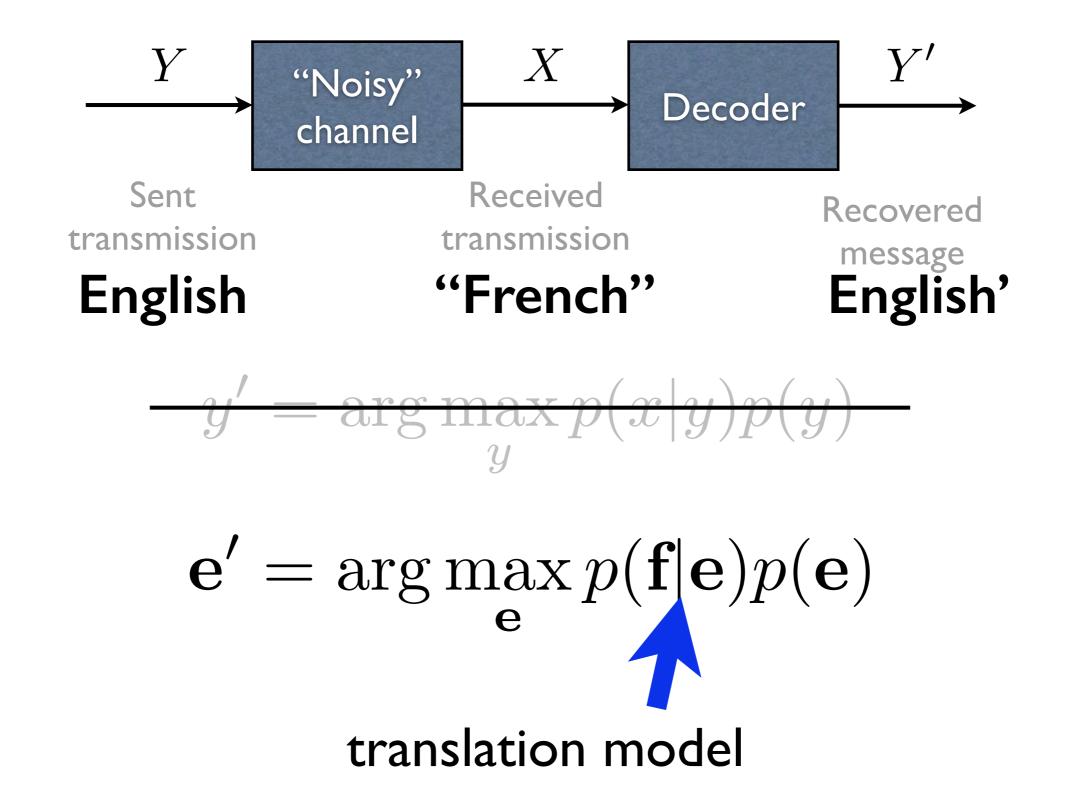


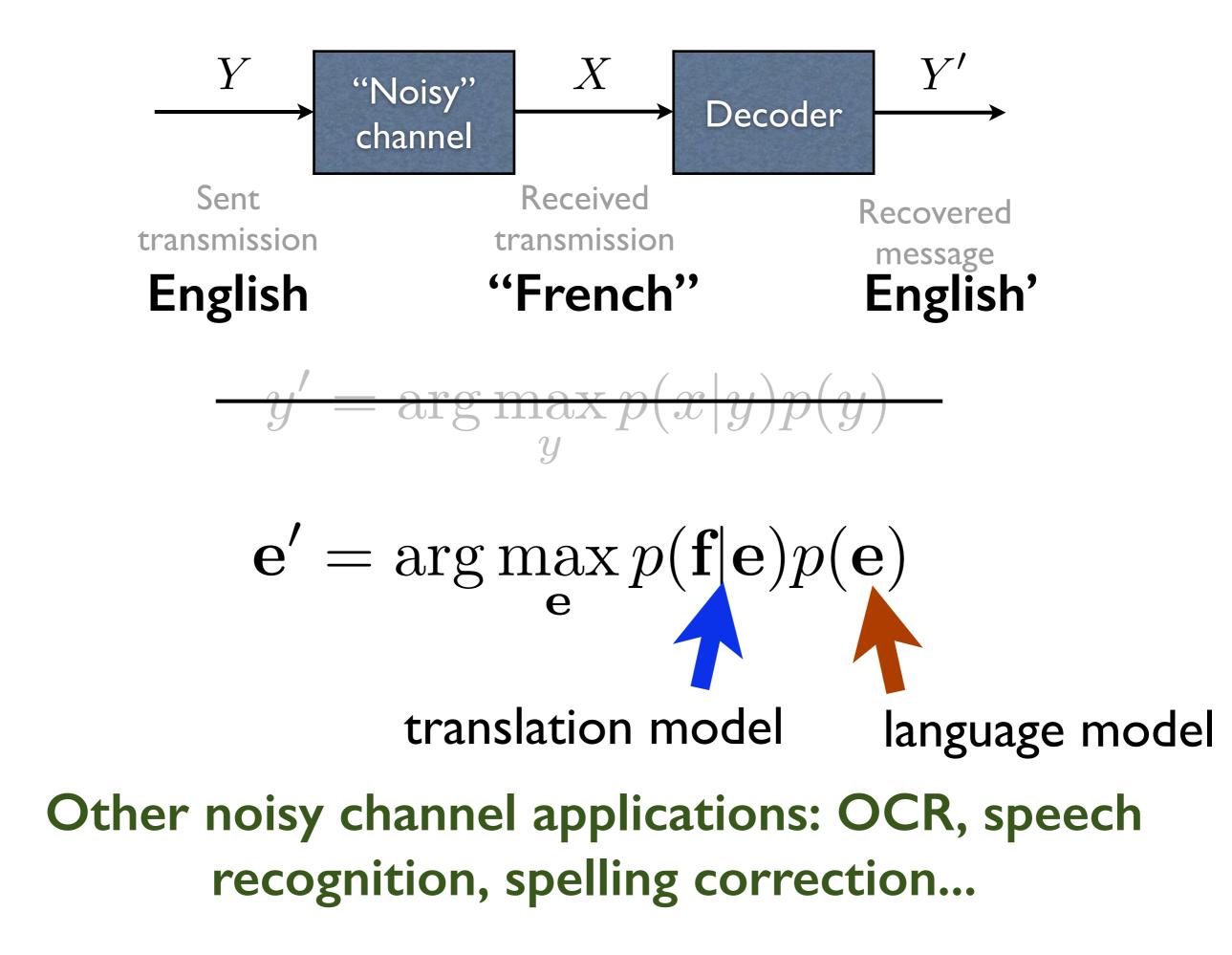
$$y' = \arg \max_{y} p(y|x)$$
$$= \arg \max_{y} \frac{p(x|y)p(y)}{p(x)}$$
$$= \arg \max_{y} p(x|y)p(y)$$



$$y' = \arg\max_{y} p(x|y)p(y)$$

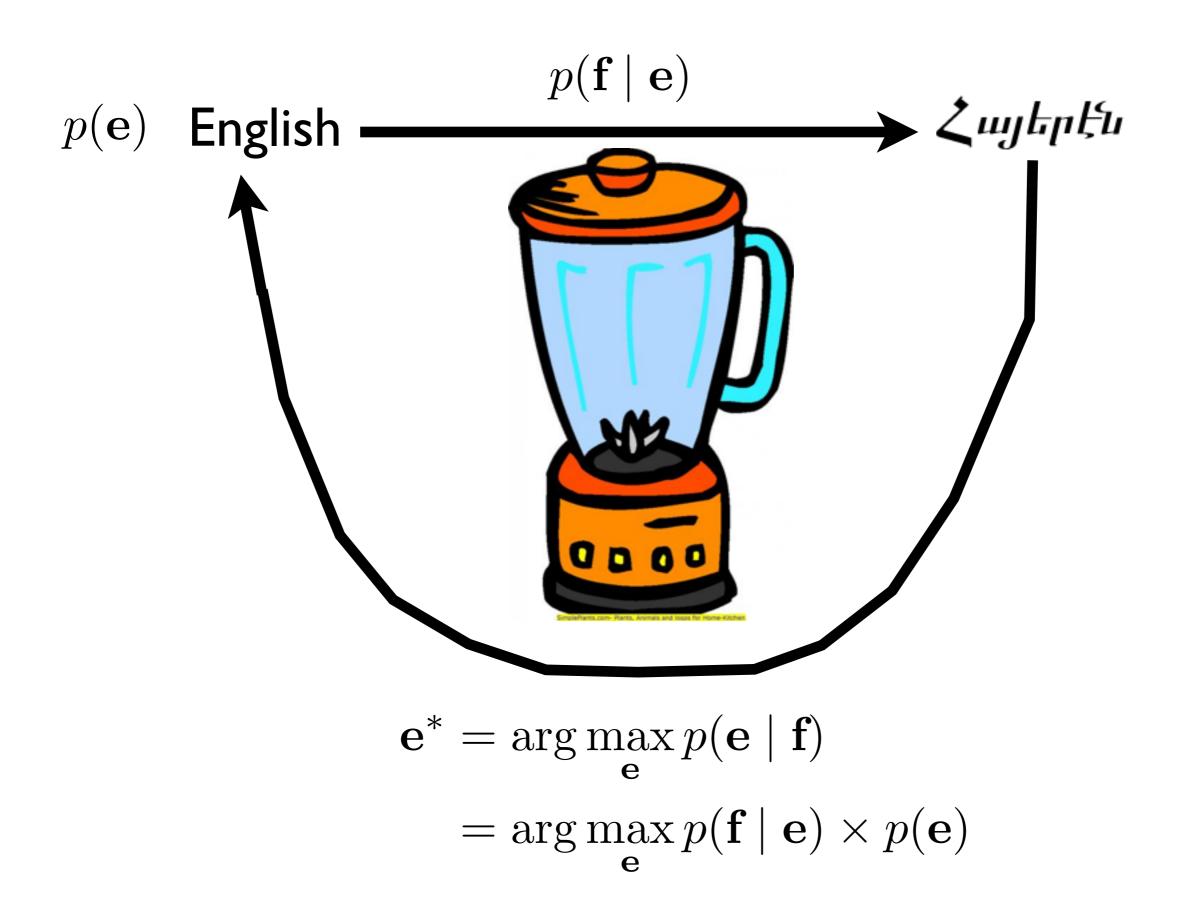






Division of labor

- Translation model
 - probability of translation back into the source
 - ensures adequacy of translation
- Language model
 - is a translation hypothesis "good" English?
 - ensures **fluency** of translation



Announcements

- HWI leaderboard submissions are due tonight at 11:59pm
- HWI writeup and code are due 24 hours later
- Next week: Phrase-based Machine Translation