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Figure 2: Example English-Urdu alignment under IBM Model 4 (left) and our discriminative model (right). Model
4 displays two characteristic errors: garbage collection and an overly-strong monotonicity bias. Whereas our model
does not exhibit these problems, and in fact, makes no mistakes in the alignment.

pervised setting. The contrastive estimation tech-
nique proposed by Smith and Eisner (2005) is glob-
ally normalized (and thus capable of dealing with ar-
bitrary features), and closely related to the model we
developed; however, they do not discuss the problem
of word alignment. Berg-Kirkpatrick et al. (2010)
learn locally normalized log-linear models in a gen-
erative setting. Globally normalized discriminative
models with latent variables (Quattoni et al., 2004)
have been used for a number of language processing
problems, including MT (Dyer and Resnik, 2010;
Blunsom et al., 2008a). However, this previous
work relied on translation grammars constructed us-
ing standard generative word alignment processes.

7 Future Work

While we have demonstrated that this model can be
substantially useful, it is limited in some important
ways which are being addressed in ongoing work.
First, training is expensive, and we are exploring al-
ternatives to the conditional likelihood objective that
is currently used, such as contrastive neighborhoods
advocated by (Smith and Eisner, 2005). Addition-
ally, there is much evidence that non-local features
like the source word fertility are (cf. IBM Model 3)
useful for translation and alignment modeling. To be
truly general, it must be possible to utilize such fea-
tures. Unfortunately, features like this that depend
on global properties of the alignment vector, a, make

the inference problem NP-hard, and approximations
are necessary. Fortunately, there is much recent
work on approximate inference techniques for incor-
porating nonlocal features (Blunsom et al., 2008b;
Gimpel and Smith, 2009; Cromières and Kurohashi,
2009; Weiss and Taskar, 2010), suggesting that this
problem too can be solved using established tech-
niques.

8 Conclusion

We have introduced a globally normalized, log-
linear lexical translation model that can be trained
discriminatively using only parallel sentences,
which we apply to the problem of word alignment.
Our approach addresses two important shortcomings
of previous work: (1) that local normalization of
generative models constrains the features that can be
used, and (2) that previous discriminatively trained
word alignment models required supervised align-
ments. According to a variety of measures in a vari-
ety of translation tasks, this model produces superior
alignments to generative approaches. Furthermore,
the features learned by our model reveal interesting
characteristics of the language pairs being modeled.
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p(e | f,m) =
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The problem of word alignment is as:

a⇤ = arg max

a2[0,n]m
p(a | e, f,m)

Can we model this distribution directly?

Another View
With this model:



Markov Random Fields (MRFs)
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Computing Z
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When the graph has certain 
structures (e.g., chains), you can 
factor to get polynomial time 
dynamic programming algorithms.
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Log-linear models
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Random Fields

• Benefits 

• Potential functions can be defined with respect 
to arbitrary features (functions) of the variables

• Great way to incorporate knowledge

• Drawbacks 

• Likelihood involves computing Z

• Maximizing likelihood usually requires computing 
Z (often over and over again!)



Conditional Random Fields

• Use MRFs to parameterize a conditional 
distribution. Very easy: let feature functions 
look at anything they want in the “input”

yAll factors in the graph of 

p(y | x) = 1
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Parameter Learning
• CRFs are trained to maximize conditional likelihood

• Recall we want to directly model

• The likelihood of what alignments?

p(a | e, f)

Gold reference alignments!

ˆ

wMLE = argmax

w

Y
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p(yi | xi ;w)



CRF for Alignment

• One of many possibilities, due to Blunsom & 
Cohn (2006)

• a has the same form as in the lexical translation 
models (still make a one-to-many assumption)

• wk are the model parameters

• fk are the feature functions

p(a | e, f) = 1

Zw(e, f)
exp

|e|X

i=1

X

k

wkf(ai, ai�1, i, e, f)

O(n2m) ⇡ O(n3)



Model

• Labels (one per target word) index source sentence

• Train model (e,f) and (f,e) [inverting the reference alignments]



Alignment Experiments

• French-English Canadian Hansards corpus

• 484 manually word-aligned sentence pairs 
(100 training, 37 development, 347 testing)

• 1.1 million sentence-aligned pairs

• Baseline for comparison: Giza++ 
implementation of IBM Model 4

• (Also experimented on Romanian-English)



Identical word

pervez musharrafs langer abschied

pervez musharraf ’s long goodbye

Identical word
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Matching prefix

pervez musharrafs langer abschied

pervez musharraf ’s long goodbye

Identical word
Matching prefix
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Matching suffix

pervez musharrafs langer abschied

pervez musharraf ’s long goodbye

Identical word
Matching prefix
Matching suffix
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Orthographic similarity
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pervez musharrafs langer abschied

pervez musharraf ’s long goodbye

In dictionary

Identical word
Matching prefix
Matching suffix
Orthographic similarity

In dictionary
...
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Lexical Features

• Word↔word indicator features 

• Various word↔word co-occurrence scores

• IBM Model 1 probabilities (t→s , s→t)

• Geometric mean of Model 1 probabilities

• Dice’s coefficient [binned]

• Products of the above



Lexical Features
• Word class↔word class indicator

• NN translates as NN                     (NN_NN=1)

• NN does not translate as MD         (NN_MD=1)

• Identical word feature

• 2010 = 2010                   (IdentWord=1 IdentNum=1)

• Identical prefix feature

• Obama ~ Obamu          (IdentPrefix=1)

• Orthographic similarity measure [binned]

• Al-Qaeda ~ Al-Kaida  (OrthoSim050_080=1)



Other Features

• Compute features from large amounts of 
unlabeled text

• Does the Model 4 alignment contain this 
alignment point?

• What is the Model 1 posterior 
probability of this alignment point?



Results



Summary
• CRFs outperform unsupervised / latent 

variable alignment models, even when only 
a small number of word-aligned sentences 
are available

• Diverse range of features can be 
incorporated and are beneficial to word-
alignment quality

• Features from unsupervised models can 
also be incorporated

Unfortunately, you need gold alignments!



Putting the pieces together

• We have seen how to model the following:
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Putting the pieces together

• We have seen how to model the following:

• Goal: a better model of                    that knows about

p(e)

p(e | f,m)

p(e,a | f,m)

p(a | e, f)

p(e | f,m)
p(e)



One naturally wonders if the problem 
of translation could conceivably be 

treated as a problem in cryptography.  
When I look at an article in Russian, I 

say: ‘This is really written in 
English, but it has been coded in 
some strange symbols. I will now 

proceed to decode.’

Warren Weaver to Norbert Wiener, March, 1947
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Claude Shannon. “A Mathematical Theory of 
Communication” 1948.

Encoder
M

Message

“Noisy” 
channel Decoder

Y X M 0

Sent  
transmission

Received 
transmission

Recovered 
message

p(y) p(x|y)
Shannon’s theory tells us:

1) how much data you can send 
2) the limits of compression  
3) why your download is so slow
4) how to translate  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6=

I can help.
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translation model language model

Other noisy channel applications: OCR, speech 
recognition, spelling correction...



Division of labor

• Translation model

• probability of translation back into the 
source

• ensures adequacy of translation

• Language model

• is a translation hypothesis “good” English?

• ensures fluency of translation



Englishp(e)
p(f | e)

e⇤ = argmax

e
p(e | f)

= argmax

e
p(f | e)⇥ p(e)



Announcements

• HW1 leaderboard submissions are due 
tonight at 11:59pm

• HW1 writeup and code are due 24 hours 
later

• Next week: Phrase-based Machine 
Translation


