
Human Ranking of 
Machine Translation

Matt Post 
Johns Hopkins University 

University of Pennsylvania 
April 9, 2015

Some slides and ideas borrowed 
from Adam Lopez (Edinburgh)



Review
• In translation, human evaluations are what matter 

– but they are expensive to run 
– this holds up science! 

• The solution is automatic metrics 
– fast, cheap, (usually) easy to compute 
– deterministic
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Review
• Automatic metrics produce a ranking 

• They are evaluated using correlation statistics 
against human judgments

3

System A

outputs

System B

System C

metrics

BLEU

humans

ranking

System D

A 
B, D 

C

B 
A 
D 
C

??



Review
• The human judgments are the “gold standard” 

• Questions: 
1. How do we get this gold 

standard? 
2. How do we know it’s correct?
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Today

• How we produce the gold-standard ranking

• How we know it’s correct
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At the end of this lecture…

• You should understand 
– how to rank with incomplete 
– how to evaluate truth claims in science 

• You might come away with 
– a desire to submit your metric to the WMT 

metrics task (deadline: May 25, 2015) 
– a desire to buy an Xbox 
– a preference for simplicity
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Producing a ranking
• Then, we take this data and produce a ranking 

• Outline of the rest of the talk
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Human ranking methods Model selection Clustering



Goal
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Goal

• Produce a ranking of systems 

• There are many ways to do this: 
– Reading comprehension tests 
– Time spent on human post-editing 
– Aggregating sentence-level judgments 

• This last one is what is used by the Workshop on 
Statistical Machine Translation (statmt.org/wmt15)
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Inherent problems
• Translation is used for a range of tasks  
 
 
 
 
 
 
 

• What best (or sufficient) means likely varies by person 
and situation

Understanding 
the past

Technical 
manuals Conversing

10

Information



Collecting data

• Data: K systems translate an N-sentence document 

• We use human judges to compare translations of an 
input sentence and select whether  
 
the first is better,  
      worse, or  
       equivalent to the second 

• We use a large pool of judges
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Collecting data

C > A > B > D > E

C > A   A > B B > D   D > E 
C > B   A > D B > E 
C > D   A > E 
C > E
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ten pairwise judgments



Dataset

• This yields ternary-valued pairwise judgments of the 
following form 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judge “dredd” ranked onlineB > JHU on sent #74  
judge “judy” ranked uedin > UU on sent #1734  
judge “reinhold” ranked JHU > UU on sent #1  
judge “jay” ranked onlineA = uedin on sent #953  
…



The sample space

• How much data is there to collect?  
 
 

– For 10 systems there are 135k comparisons 
– For 20 systems, 570k 
– More with multiple judges 

• Too much to collect, also wasteful; instead we 
sample
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(number of ways to pick two systems)  
x (number of sentences) x (number of judges)



Design of the WMT Evaluation (2008-2011)
system A

system B

system C

system D

system E

system F

system G

reference =

➡ Sample input sentence.
➡ Sample five translators of it from Systems ∪ {Reference}.
➡ Sample a judge.
➡ Receive set of pairwise judgments from the judge.

While (evaluation period is not over):

1. reference
2. system C
3. system A, system F
4. system D

reference     system A
reference     system C
reference     system D
reference     system F
system A     system C
system A     system D
system A     system F
system C     system D
system C     system F
system D     system F

�
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WMT Raw Data:

pairwise rankings 



How much data do we collect?
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of tens of 
millions 
possible



Producing a ranking
• Then, we take this data and produce a ranking 

• Human ranking methods 
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Expected wins and variants

Bayesian model (relative ability) 

TrueSkill™



Expected wins (1)
• This most appealing and intuitive approach 

• Define wins(A), ties(A), and loses(A) as the 
number of times system A won, tied, or lost 

• Score each system as follows  
 
 

• Now sort by scores
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score(A)	
  =	
  
wins(A)	
  +	
  ties(A)	
  

wins(A)	
  +	
  ties(A)	
  +	
  loses(A)



Expected wins (2)
• Do you see any problems with this?  
 
 

• Look at a judgments:  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score(A)	
  =	
  
wins(A)	
  +	
  ties(A)	
  

wins(A)	
  +	
  ties(A)	
  +	
  loses(A)

judge “dredd” ranked onlineB > JHU on sent #74  
judge “judy” ranked uedin > UU on sent #1734  
judge “reinhold” ranked JHU > UU on sent #1  
judge “jay” ranked onlineA = uedin on sent #953

one winner, one loser

one winner, one loser

one winner, one loser

two winners, no losers



Expected wins (3)
• A system is rewarded as much for a tie as for a win 

– …and most systems are variations of  
the same underlying architecture, data 

• New formula: throw away ties  
 
 
 

• Wait: Is this better?
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A Grain of Salt for the WMT Manual Evaluation (Bojar et al., 2012)

score(A)	
  =	
  
wins(A)

wins(A)	
  +	
  loses(A)



Expected wins (4)
• Problem 2: the luck of the draw  
 
 
 
 

• Consider a case where in reality B > C, but  
– B gets compared to a bunch of good systems 
– C gets compared to a bunch of bad systems 
– we could get score(C) > score(B
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aggregation over
different sets of inputs 
different competitors 

different judges



Expected wins (5)
• This can happen! 

– Systems include a human reference translation 
– Also include really good unconstrained 

commercial systems
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Expected wins (6)          

• Even more problems: 
– remember that the scores for 

a system is the percentage of 
time it won in comparisons 
across all systems 

– what if score(B) > score(C), 
but in direct comparisons, C 
was almost always better 
than B? 

– this leads to cycles in the 
ranking 

• Is this a problem?
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Summary

• List of problems: 
– Including ties biases similar systems, excluding 

discredits 
– Comparisons do not factor in difficulty of the 

“match” (i.e., losing to the best system should 
count less) 

– There are cycles in the judgments 

• We made intuitive changes, but how do we know 
whether they’re correct?
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Relative ability model

• In Expected Wins, we estimate a probability of 
each system winning a competition 

• We now move to a setup that models the relative 
ability of a system 
– Assume each system Si has an inherent ability, µj 
– Its translations are then represented by draws 

from a Gaussian distribution centered at µj
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Models of Translation Competitions (Hopkins & May, 2013)



Relative ability
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µi better



Relative ability
• A “competition” proceeds as follows: 

– Choose two systems, Si and Sj, from the set {S} 
– Sample a “translation” from their distributions  

    qi ~ N(Si; µi, σ2) 
    qj ~ N(Sj; µj, σ2) 

– Compare their values to determine who won 
• Define d as a “decision radius” 
• Record a tie if |qi – qj| < d 
• Else record a win or loss
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Visually
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Observations

• We can compute exact probabilities for all these 
events (difference of Gaussians) 

• On average, a system with a higher “ability” will 
have higher draws, and will win 

• Systems with close µs will tie more often
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Learning the model
• If we knew the system means, we could rank them 

• We assume the data was generated by the process 
above; we need to infer values for hidden params: 
– System means {µ} 
– Sampled translation qualities {q} 

• We’ll use Gibbs sampling 
– Uses simple random steps to learn a 

complicated joint distributions 
– Converges under certain conditions
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Gibbs sampling

• Represent data as tuples  (Si,	
  Sj,	
  π,	
  qi,	
  qj) 
 
 
 

• Iterate back and forth between guessing {q}s and 
{µ}s
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judge “dredd” ranked onlineB > JHU on sent #74  
judge “judy” ranked uedin > UU on sent #1734  
judge “reinhold” ranked JHU > UU on sent #1  
judge “jay” ranked onlineA = uedin on sent #953

(onlineB, JHU, >, ?, ?)  
(uedin, UU, >, ?, ?)  
(JHU, UU, >, ?, ?)  
(onlineA, uedin, =, ?, ?)

known unknown



Iterative process
[collect	
  all	
  the	
  judgments]	
  
until	
  convergence	
  
	
  	
  #	
  resample	
  translation	
  qualities	
  
	
  	
  for	
  each	
  judgment	
  
	
  	
  	
  	
  qi	
  ~	
  N(µi,σ2) 
	
  	
  	
  	
  qj	
  ~	
  N(µj,σ2)	
  
	
  	
  	
  	
  #	
  (adjust	
  samples	
  to	
  respect	
  judgment	
  π)	
  

	
  	
  #	
  resample	
  the	
  system	
  means 
	
  	
  for	
  each	
  system	
  
	
  	
  	
  	
  µi	
  =	
  mean({qi})	
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Visually
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Summary
• Summary 

– Model provides us with an explanation of how the 
data was generated 

– We infer the abilities of the systems to rank using 
the human judgments 

• Problems 
– Still no notion of evenness of the match 
– Judges are not modeled 
– Actual sentences are ignored
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TrueSkill™ Ranking System
• Used to rate players in Xbox Live 

• Based on the ELO system for Chess 

• Models player ability (µ) and the system’s 
confidence about that estimate (σ) 
– When a game is played, the outcome (win, loss, 

or tie) is used to update these parameters 
– A more surprising outcome results in larger 

updates 
– These values are also used to find even matches
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Visualization
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Visualization
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Observation: S1 defeats S2

Not pictured: Confidences are 
separate for each system



Updating
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outcome surprisal

If S1 defeats S2, 



TrueSkill for MT

• In the MT setting: 
– Each system is a player 
– Each pairwise annotation is a game 

• We consider the judgments sequentially, an update 
the system parameters after each one 

• Differences from Xbox: 
– Systems don’t improve between games
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Procedure
until	
  convergence	
  
	
  	
  create	
  a	
  new	
  match	
  
	
  	
  observe	
  the	
  outcome	
  
	
  	
  update	
  the	
  parameters	
  of	
  both	
  systems	
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Advantages of TrueSkill

• The system parameter updates reflect how 
surprising the outcome was 

• TrueSkill is an online algorithm (as opposed to 
batch) 
– Instead of sampling system pairs uniformly, we 

can gather more judgments from systems that 
are closely matched 

– This presents some potential for reducing the 
amount of data we need to collect
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Partial orderings
• What is the best university in the world? 

– Best is not always well-defined or 
meaningful 

• Instead of total orderings, we present 
partial orderings, which are equivalence 
clusters of systems that can’t be 
distinguished
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Simulating Human Judgment in Machine 
Translation Evaluation Campaigns (Koehn, 2012)



Computing clusters
• To compute clusters, we use a 

statistical technique called bootstrap 
resampling 
– Estimate variance by sampling the 

sample many times and compute 
statistics over the samples 

• We run each model 1,000 times 
– For each system, extract rank from 

each fold, throw out outliers 
– Use resulting rank range to cluster
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Hindi–English (WMT 2014)
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rank range constrained unconstrained

1 online-B

2–4 uedin-syntax, cmu online-A

5 uedin-phrase

6–7 afrl, iit-bombay

8 dcu-lingo24

9 iit-hyderabad



Model selection

• We have multiple ways of ranking the systems 
– Expected wins 
– Model of relative ability 
– TrueSkill 

• Which is best? 
– Which one does the best job of making 

predictions?
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Model selection
• Experimental setup 

– Split the complete data 
into 100 folds 

– For each fold 
• Build a model on the 

other 99 folds 
• Compute accuracy on 

the current fold 
– Report average 

accuracy across all 
folds
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Dataset: 328k judgments  
10 language pairs 



Results
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Analysis
• The different methods don’t have that much of an 

effect (surprising?) 
– In fact, the ordering of systems was exactly the 

same for eight of the language pairs 

• However, this hides the amount of data used
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Data requirements
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Analysis
• The different methods don’t have that much of an 

effect (surprising?) 
– In fact, the ordering of systems was exactly the 

same for eight of the language pairs 

• However, this hides the amount of data used 
– TrueSkill needs much less data 
– Also has much smaller variance (so we get 

tighter clusters)
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Cluster counts
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Summary
• There are many ways of producing the human 

ranking, from simple models to more elegant ones 

• We use the model’s ability to predict unseen data 
as a test of how good it is 
– There are many dimensions to goodness, 

including accuracy and data requirements 

• Translation quality is inherently subjective and task-
specific 
– Publishing clusters is a step towards capturing 

this
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